

VERSUCH 3: PUNKTOPERATOREN

Pixel				
DBV-Programm:	OPTIMAS	Optimas 6.51		
Bilder:	1 DARK_G.TIF, 2 WIRBEL_G.TIF 3 HOLZ_G.TIF, 4 PUTZ_G.TIF	5 SAMPLE_G.TIF 6 KVD_G.TIF 7 THORAX_G.TIF 8 SKULP_G.TIF		
Bilderverzeichnis:	C:\BILDER\GRAY			
Arbeitsverzeichnis:	C:\TEMP Bearbeitete Bilder werden grundsätzlich auf C:\TEMP abgespeichert. Nach Beendigung des Praktikums ist dieses Verzeichnis wieder frei zu machen.			
Kontrollfragen:	-			

- a) Definieren Sie den Punktoperator!
- b) Was ist eine LUT ? Skizzieren Sie Wurzel-LUT, Quadrat.-LUT, Clipping-LUT!
- c) Was bedeutet GW-Äqualisation? Erklären Sie den Algorithmus!
- d) Was sind Äquidistanz-Coloride und wozu dienen sie?

VERSUCHSDURCHFÜHRUNG

Aufgabe 1: *Histogramme -->* IMAGE TOOLBAR Ermitteln Sie für die angegebenen Bilder 1-7 die Histogramme (IMAGE TOOLBAR oder STRG + H). Erklären Sie die Parameter Mean, StdDev, Var.?

Aufgabe 2: LUT- Funktion Entscheiden Sie anhand der Histogramme, welche Funktionen in die LUT zu schreiben sind, damit die Bilder optimiert werden hinsichtlich Kontrast, Helligkeit und GW-Dynamik (IMAGE / OUTPUT-LUT's / INTENSITY-MAP / FUNKTION). quadratische LUT --> GAMMA 0.5 Wurzelkennlinie LUT --> GAMMA 2 logarithmische LUT --> GAMMA 4 Clipping LUT --> Grauwert f1-->LEVEL, Grauwert f2 -->WINDOW GW-Äqualisierung --> UNIFORM APPLY FUNKTION Bemerkung: --> nur Vorschau TO PIXEL --> Abspeicherung

 Aufgabe 3: Bild-Optimierung 1

 (IMAGE / OUTPUT-LUT's / INTENSITY-MAP / FUNKTION).

 Wenden Sie auf das Bild 7 und 8 jeweils die Funktionen

 Clipping
 (LEVEL / WINDOW) und

 Histogramm Äqualisation
 (FUNKTION UNIFORM) an.

Ermitteln Sie Helligkeit und Kontrast (Mittelwert und Varianz) der vier entstandenen Bilder.

Aufgabe 4: Bild-Optimierung 2

Wie Aufgabe 3 (CLIPPING und ÄQUALISATION) für das Bild 6. Welche Schlußfolgerung können Sie hinsichtlich der Anwendbarkeit beider Verfahren treffen? Für welche Histogrammformen (Modalität) sind welche Verfahren geeignet?

Aufgabe 5: *Äquidistanz-Coloride 1 (Falschfarbendarstellung)* BILD 5: Mit Hilfe von 3 LUT ist das Bild so zu markieren, daß die rundlichen Objekte **rot** markiert werden - der restliche Bildinhalt soll **unverändert** bleiben.

Vorgehensweise:

- a) Ausmessen der GW mit İ --> Anzeige der aktuellen GW in der Statuszeile.
- b) Farbzuordnung mit (IMAGE / OUTPUT-LUT's / COLORS).
 COLORIZE RANGE --> LOWER, UPPER --> Selektieren der Farbe --> APPLY (Rückgängig machen mit Funktion "NORMAL").

Aufgabe 6: Äquidistanz-Coloride 2

BILD 5: Mit Hilfe der 3 LUT ist das Bild so zu markieren, daß die rundlichen Objekte **rot** markiert werden - der restliche Bildinhalt soll **weiß** sein ! Skizzieren Sie sich zunächst den Verlauf der LUT-Kennlinien.

Aufgabe 7: Äquidistanz-Coloride 3

BILD 5: Mit Hilfe der 3 LUTist das Bild so zu markieren, daß die schrägen Streifen **grün** erscheinen - der restliche Bildinhalt soll **schwarz** sein! Skizzieren Sie die LUT- Kennlinien.

Aufgabe 8: Äquidistanz-Coloride 4

BILD 5: Binarisieren Sie das BILD 5 so, daß alle Objekte (rundliche Objekte und Streifen) **schwarz** und der Untergrund **weiß** erscheint.

Aufgabe 9: Äquidistanz-Coloride 5

Programm: Optimas: BILD 7: THORAX_G.TIF Im MRI-Bild (Magent Resonanz Image) sollen die Grauwertbereiche der Lunge farblich markiert werden. Der Grauwertbereich liegt zwischen 7 und 30. Markieren Sie die Bereiche (IMAGE / OUTPUT-LUT's / COLORS) mit folgenden Falschfarben:

7	- 9	magenta
10	- 12	blue,
13	- 16	cyan,
17	- 20	green,
21	- 25	yellow,
26	- 30	red.