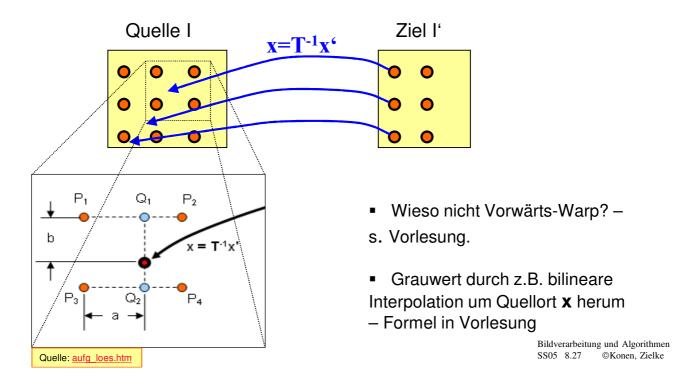
Bildverarbeitung und Algorithmen

Prof. Dr. Wolfgang Konen

Warping im Detail

Bildverarbeitung und Algorithmen SS05 8.24 ©Konen, Zielke

Die Schritte des Warping-Algorithmus


- ☐ Schritt 1: Passpunkte finden
 - automatisch oder manuell
- ☐ Schritt 2: Suche zu den Passpunkten die beste Transformation
 - analytisch (z.B. Vertreter aus Klasse der affinen Transformationen)
 - oder stückweise linear für jeden Pixelort x' im Zielbild (Gridding)
- ☐ Schritt 3: Grauwerte der Zielpixel festlegen
 - durch Interpolation am Quellort (nächster Nachbar, bilinear, bikubisch, ...)

Aus didaktischen Gründen gehen wir nachfolgend diese Schritte in umgekehrter Reihenfolge durch

Bildverarbeitung und Algorithmen SS05 8.26 ©Konen, Zielke

Warping, Schritt 3 (Transformationen T und T-1 seien gegeben)

□ Backwards-Warp: Zielpixelort x' wird durch Quellort x koloriert

Warping, Schritt 2 Geometrische Transformation T

☐ Typisierung analytischer Transformationen

Euclidean / Procrustes	$x' = ax + by + t_x$, $a = s \cos \alpha$ $y' = -bx + ay + t_y$, $b = s \sin \alpha$
Affine / 1^{st} order polynomial	$x' = a_0 + a_1 x + a_2 y$ $y' = b_0 + b_1 y + b_2 y$
Bilinear	$x' = a_0 + a_1 xy + a_2 x + a_3 y$ $y' = b_0 + b_1 xy + b_2 x + b_3 y$
Perspective	$x' = (a_0 + a_1x + a_2y)/(c_0x + c_1y + 1)$ $y' = (b_0 + b_1x + b_2y)/(c_0x + c_1y + 1)$
2^{nd} order polynomial / Biquadratic	$x' = a_0 + a_1x + a_2y + a_3x^2 + a_4y^2 + a_5xy$ $y' = b_0 + b_1x + b_2y + b_3x^2 + b_4y^2 + b_5xy$
General polynomial	$\begin{array}{rcl} x' & = & \sum_{i} \sum_{j} a_{ij} x^{i} y^{j} \\ y' & = & \sum_{i} \sum_{j} b_{ij} x^{i} y^{j} \end{array}$

Bildverarbeitung und Algorithmen SS05 8.28 ©Konen, Zielke

Warping, Schritt 2 Geometrische Transformation T

☐ Typisierung analytischer Transformationen

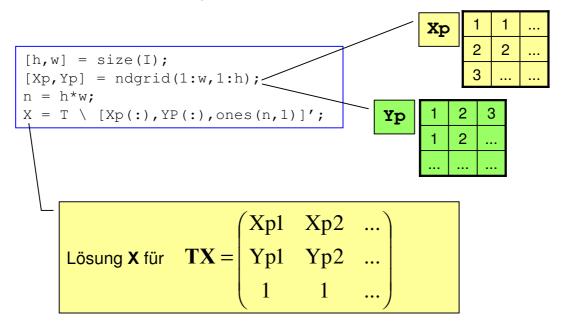
Euklid / Procrustes	Geraden bleiben Geraden, Quadrate bleiben Quadrate	₩ •₩•
Affin	Geraden bleiben Geraden, Parallelen bleiben parallel, Rechteck → Parallelogramm	
Bilinear	Geraden bleiben Geraden, Rechteck → allg. Viereck	
perspektivisch (projektiv)	Geraden bleiben Geraden, Parallelen → Geraden mit gemeinsamen Fluchtpunkt	
Biquadratisch	Geraden werden zu Kurven	38 3

Warping, Schritt 2 Geometrische Transformation T

☐ Typisierung analytischer Transformationen

Euklid / Procrustes	Kombination Translation + Rotation + globale Skalierung	mind. 2 Kontrollpunkte
Affin	Kombination Translation + Rotation + x-Skalierung + y- Skalierung	mind. 3 Kontrollpunkte
Bilinear		mind. 4 Kontrollpunkte
perspektivisch (projektiv)		mind. 5 Kontrollpunkte
Biquadratisch		mind. 6 Kontrollpunkte

Bildverarbeitung und Algorithmen SS05 8.30 ©Konen, Zielke


Warping, Schritt 2 Geometrische Transformation T

- ☐ Wie genau macht man den Warp in MATLAB?
 - 1. wenn T gegeben ist
 - 2. wenn T aus Passpunkten zu berechnen ist
 - a) beste Transformation im LS-Sinne aus bestimmter Klasse von Transformationen suchen >> s. Übung
 - b) stückweise-linear interpolieren zwischen Passpunkten (Gridding*)

^{*} Gridding ist der Vorgang, bei dem eine Funktion, deren Werte nur an einigen Stellen gegeben sind, für alle Punkte in einem regelmäßigen Gitter (Grid) berechnet wird.

Warping, Schritt 2 2.1 vorgegebenes T

☐ Zu 2.1.: Sei T als homogene 3x3-Matrix bekannt

Bildverarbeitung und Algorithmen SS05 8.32 ©Konen, Zielke

Warping, Schritt 2 2.2.a) Bestes T mit LS-Fit

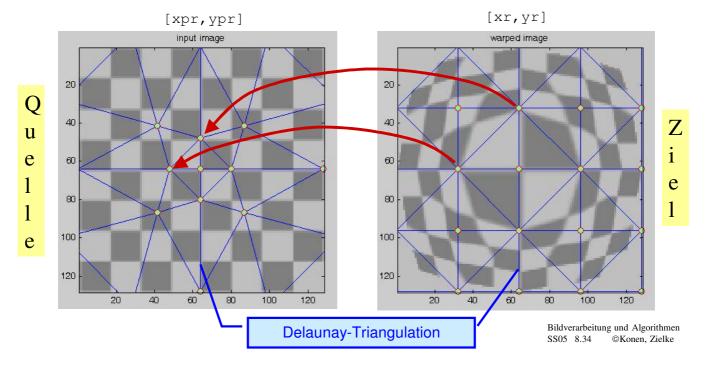
☐ Zu 2.2.a): Seien mehr Passpunkte gegeben als man zur Bestimmung von T braucht. Bsp. Rotationsstreckung:

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \quad \Leftrightarrow \quad \begin{cases} x' = ax + by \\ y' = -bx + ay \end{cases} \quad \Leftrightarrow \quad \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x & y \\ y & -x \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix}$$

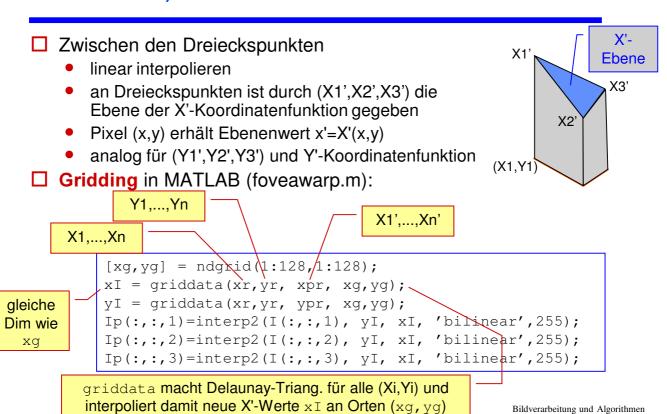
☐ Übergang auf mehrere Passpunkte:

Der Trick: Jeder freie Parameter a,b,... taucht genau 1x auf

$$\begin{pmatrix} x_{1}' \\ \vdots \\ x_{n}' \\ y_{1}' \\ \vdots \\ y_{n}' \end{pmatrix} = \begin{pmatrix} x_{1} & y_{1} \\ \vdots & \vdots \\ x_{n} & y_{n} \\ y_{1} & -x_{1} \\ \vdots & \vdots \\ y_{n} & -x_{n} \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} \iff \mathbf{X'} = \mathbf{Z}\mathbf{t}$$


Dieses i.d.R. überbestimmte System für Parametervektor $\mathbf{t} = (\mathbf{a}, \mathbf{b})^T$ wird durch den MATLAB-Befehl

$$t = Z \setminus Xp;$$


im LS-Sinne gelöst.

Warping, Schritt 2 2.2.b) stückweise lineare Transformation T

- ☐ Zu 2.2.b): Aufgabe: Die Bildmitte vergrößert abbilden (Fovea)
- □ Definiere einige Passpunkte

Warping, Schritt 2 2.2.b) stückweise lineare Transformation T

SS05 8.35

©Konen, Zielke

Warping, Schritt 2 Ergänzung

- ☐ Fragen / Aufgaben
 - Wieso muss es "..., yI, xI, ..." heißen und nicht "..., xI, yI, ..."?
 - Können Sie eine Fovealisierungs-Funktion angeben, d.h. eine Funktion, die aus dem Gitter [xr, yr] das Gitter [xpr, ypr] berechnet?
 - Aufgabe Warping: <u>aufgaben.htm</u>, Lsg.: <u>euclideanwarp2.m</u>
- □ zum Schmunzeln
 - foveawarp2.m

Bildverarbeitung und Algorithmen SS05 8.36 ©Konen, Zielke

Warping, Schritt 1 Passpunkte finden

- □ manuell
 - o.k. für Bildbearbeitung, aber keine (automatisierte) Bildverarbeitung
 - mühsam, wenn viele Bilder
 - optional: Passpunkte per Kreuzkorrelation verbessern
- automatisch: möglich, wenn korrespondierende Punkte in 2 Bildern vorliegen
- ☐ diese Aufgabe heißt Matching oder Registrierung
- 2 Teilprobleme:
 - das Auffinden geeigneter Punkte im Bild
 - "salient points", Landmarken
 - ♦ >> Aperturproblem (!)
 - das genaue Wiederfinden im anderen Bild
 - ♦ Template Matching
 - s. Projekt Tracking

Anwendungen Warping

Kamerakalibrierung
(Kissen- oder Tonnenverzeichnung korrigieren)
industrielle Prüfaufgaben für deformierbare Objekte
Inverse Perspektive
medizinische Bildverarbeitung
 Matching und Registrierung bei multimodalen, multitemporalen Aufnahmen >> s. Projekt Matching
Zwischenbilder berechnen >> s. Projekt Morphing
Facial Animation, 3D-MM (Morphable Models) [Blanz, Vetter] >> s. reanim_exercise.mpg
Mosaicing (mehrere Bilder zusammensetzen) >> s. Projekt Panoramic View

Bildverarbeitung und Algorithmen SS05 8.38 ©Konen, Zielke