Bildverarbeitung und Algorithmen

Prof. Dr. Wolfgang Konen, Thomas Zielke

Filterung von Bildern (2D-Filter)

Bildverarbeitung und Algorithmen SS06 6.1 ©Konen, Zielke

Was, denken Sie, ist ein Filter in der BV? Welche Filter kennen Sie?

- □ neuer Pixelwert bilden aus Verknüpfung mit Nachbarwerten
- ☐ Tiefpass-, Hochpass-, Bandpass-Filter
- ☐ Glättungsfilter (Gauss, Box)

Inhalt

Filter im Ortsraum: Die Faltung
Tiefpass-Filter
Filter im Frequenzraum: Fouriertransformation1D-Fouriertransformation2D-Fouriertransformation
Anwendungen der Fouriertransformation (kurz) • Bandston

Bildverarbeitung und Algorithmen SS06 6.3 ©Konen, Zielke

Filterung eines Bildes Implementierungsalternativen (lineare Filter)

Bei der Filterung eines Bildes werden die Bildpunkte (Pixel) in Abhängigkeit von ihrer Nachbarschaft manipuliert.

- Ortsraum
 - Direkte Manipulation der Pixelwerte im Bildbereich
- ☐ Frequenzraum

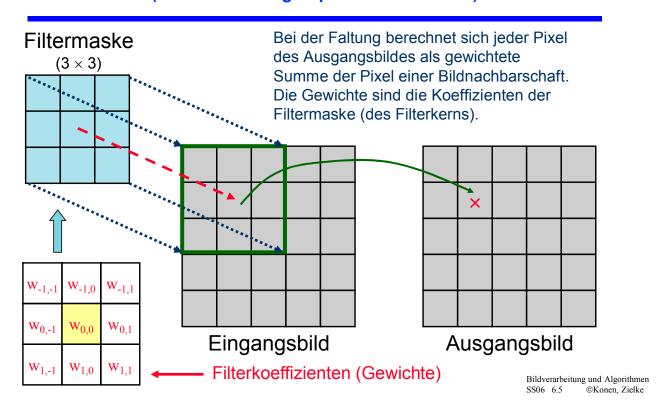
Unsharp Masking

- Bildtransformation (z.B. Diskrete Fourier Transformation / DFT)
- Manipulation der Transformierten
- Rücktransformation in den Bildbereich

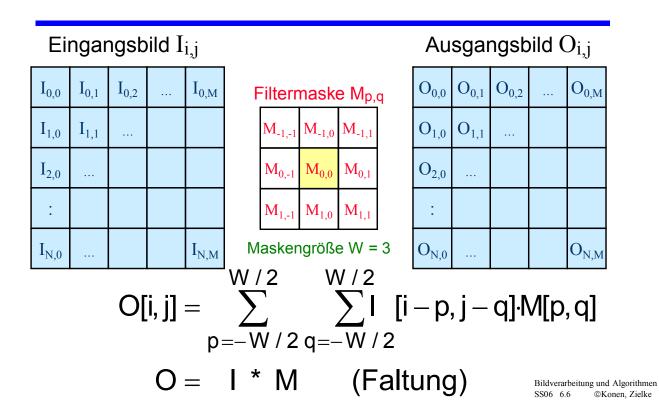
Eine Filteroperation ist im Frequenzraum weniger aufwendig als im Ortsraum. Jedoch ist bei Filteroperationen, die nur eine kleine Bildnachbarschaft einbeziehen, der fixe Aufwand für die Bildtransformationen i.d.R. größer als der Aufwand für die Berechnung der Filterung selbst.

Bildverarbeitung und Algo ithmen SS06 6.4 ©Konen, Zielke

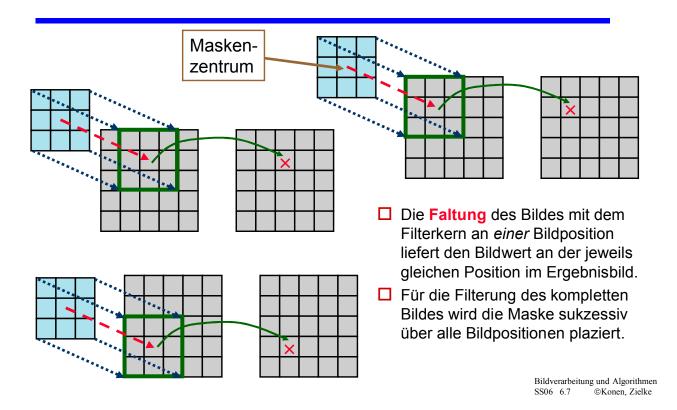
Prinzip der diskreten Faltung (Konvolution) (Örtliche Faltung / Spatial Convolution)



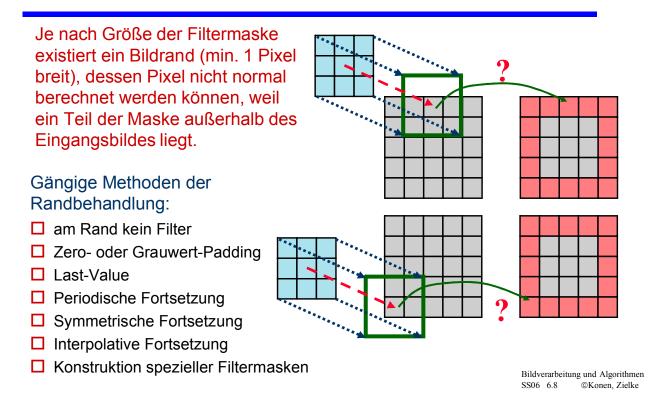
Berechnung der diskreten Faltung



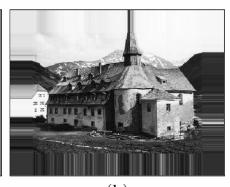
Prinzip des Faltungsprozesses



Konvolution mit Filtermasken Randbetrachtungen



Randbehandlung



(a)

(c)

Zero- o. Grauwert-Padding

(Zero-Padding ist ImageJ's Default, wenn man getPixel von "out-of-bounds"-Positionen macht)

Last Value

(meist einfach und sinnvoll für Filter im Ortsraum)

Periodische Fortsetzung

(sieht unsinnig aus, aber z.B. die Fouriertransformation arbeitet so)

Bildverarbeitung und Algorithmen SS06 6.9 ©Konen, Zielke

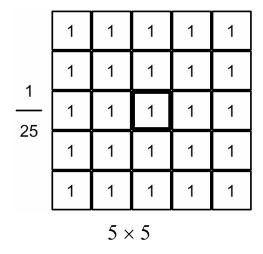
Inhalt

- ☐ Filter im Ortsraum: Die Faltung
- □ Tiefpass-Filter
- ☐ Filter im Frequenzraum: Fouriertransformation
 - 1D-Fouriertransformation
 - 2D-Fouriertransformation
- ☐ Anwendungen der Fouriertransformation (kurz)
 - Bandstop
 - Unsharp Masking

Diskrete Tiefpass-Filter (Filtermasken)

- ☐ Glättungseffekt (Smoothing, Blur)
- ☐ Koeffizienten sind ausnahmslos positiv
- ☐ Koeffizienten sind normalisiert (Summe aller Koeffizienten ergibt 1)
- ☐ Beispiel: Mittelwertfilter

1	1	1	1	
9	1	1	1	
9	1	1	1	
3 × 3				



Bildverarbeitung und Algorithmen SS06 6.11 ©Konen, Zielke

Lineare und Separierbare Filter

- ☐ Ein Filter ist **linear**, wenn er Pixelwerte linear verknüpft. Die **Faltung** ist ein linearer Filter
- ☐ Ein Filter heißt **separierbar**, wenn er in mehrere Faltungen aufgespalten werden kann: $O = I * M \Leftrightarrow O = I * M_1 * M_2$
- ☐ Der Mittelwerfilter ist x/y-separierbar, denn

$$M_1 = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$
 und $M_2 = \frac{1}{3} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$

liefert
$$M = M_1 * M_2 = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Mittelwertfilter (Beispiel)

Original

Filterungsergebnis mit 3×3 Maske

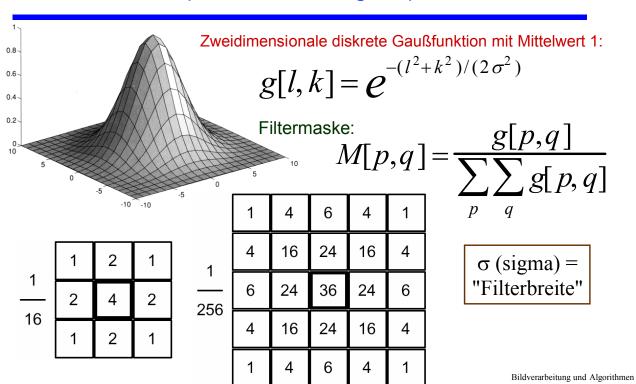
Filterungsergebnis mit 5×5 Maske

Bildverarbeitung und Algorithmen SS06 6.13 ©Konen, Zielke

SS06 6.14

©Konen, Zielke

Gaußscher Glättungsfilter (Gaussian smoothing filter)



Gaußscher Glättungsfilter Beispiel

Original

 5×5 , $\sigma = 1$

 9×9 , $\sigma = 2$

Bildverarbeitung und Algorithmen SS06 6.15 ©Konen, Zielke

Separierbarer Gauss-Filter

 \square Auch der Gauss-Filter ist x/y-separierbar. Überlegen Sie, wie die beiden Filter M_1 und M_2 aussehen müssen, um

1	1	2	1		
16	2	4	2		
10	1	2	1		

zu erzeugen

☐ Wie sieht's für den 5x5-Gauss-Filter aus?

Inhalt

- ☐ Filter im Ortsraum: Die Faltung
- □ Tiefpass-Filter
- ☐ Filter im Frequenzraum: Fouriertransformation
 - 1D-Fouriertransformation
 - 2D-Fouriertransformation
- ☐ Anwendungen der Fouriertransformation (kurz)
 - Bandstop
 - Unsharp Masking

Bildverarbeitung und Algorithmen SS06 6.17 ©Konen, Zielke

Erzeugung einer Frequenzraumdarstellung (1) Diskrete 1D Fourier-Transformation

Die eindimensionale diskrete Fourier-Transformation (FT) eines Signals G(x) ist definiert als:

$$F(m) = \sum_{x=0}^{N-1} G(x)e^{-i\frac{2\pi m}{N}x}$$

Die Fourier-Transformation ist invertierbar (umkehrbar). Das Originalbild kann durch Rücktransformation in den Ortsraum wieder hergestellt werden.

N ist die Signallänge und m ist die **Wellenzahl** (Wieviel volle Wellen passen hinein?)

e ist die Basis des natürlichen Logarithmus (ca. 2,71828) und $i = \sqrt{-1}$ ist die imaginäre Einheit für eine komplexe Zahl.

Exkurs: Komplexe Zahlen

Allgemeine Form einer komplexen Zahl:

- 1. Komponentendarstellung (Realteil und Imaginärteil)
- 2. Darstellung durch Betrag und Winkel in der komplexen Ebene

$$a + bi = R \cdot e^{i\alpha}$$

Betrag:

$$R = \sqrt{(a^2 + b^2)}$$

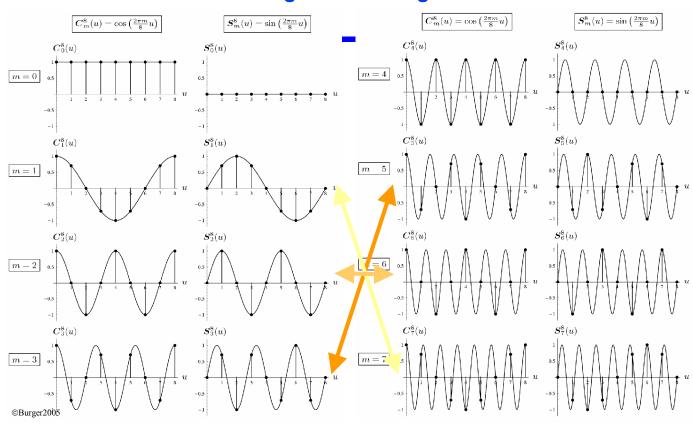
Euler-Identität:

$$e^{i\alpha} = \cos(\alpha) + i\sin(\alpha)$$
 $\Rightarrow e^{i0} = 1$

$$e^{-i\frac{2\pi m}{N}x} = cos\left(\frac{2\pi m}{N}x\right) - isin\left(\frac{2\pi m}{N}x\right)$$

Bildverarbeitung und Algorithmen SS06 6.19 ©Konen, Zielke

Abtastung und Aliasing für N=8



Eigenschaften der diskreten 1D-FT (1)

- □ Nur Frequenzen bis m=-4,..,0,..,+4 erlaubt (bei N=8)
- ☐ Allgemein: m=-N/2,..,0,...,+N/2
- □ Ausserhalb liegende Frequenzen werden in -4,...,+4 fälschlicherweise gemappt (Aliasing, Nyquist-Theorem): 5 auf 3, 6 auf 2 (genauer: -2)
- ☐ Anordnung Frequenzen physikalisch:

-4	-3	-2	-1	0	1	2	3	4			
				0	1	2	3	4=-4	-3	-2	-1

- ☐ Anordnung Frequenzen in FFT (genau 8 Pixel, wie in Signal). Man muss also mit Wrap-Around verschieben.
- \square F(0)= Pixel-Summe des Signals G(x)
- \square F(-N/2)=F(N/2)

Bildverarbeitung und Algorithmen SS06 6.21 ©Konen, Zielke

Erzeugung einer Frequenzraumdarstellung (1) Diskrete 2D Fourier-Transformation

Die zweidimensionale diskrete Fourier-Transformation (FT) eines Bildes G(y,x) ist definiert als:

$$F(u,v) = \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} G(y,x) e^{-i\frac{2\pi u}{N}y} e^{-i\frac{2\pi v}{N}x}$$

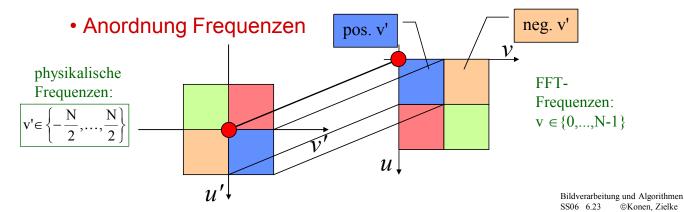
Die Fourier-Transformation ist invertierbar (umkehrbar). Das Originalbild kann durch Rücktransformation in den Ortsraum wieder hergestellt werden.

u ist die **Wellenzahl** in y-Richtung und v die **Wellenzahl** in x-Richtung (Wieviel volle Wellen passen hinein?)

Eigenschaften der diskreten 2D-FT (1)

- Es gilt F(-u,-v) = F(N-u,N-v)(nachrechnen)
- inverse FT

G(y,x) =
$$\frac{1}{N} \sum_{u=0}^{N-1} \sum_{v=0}^{N-1} F(u,v) e^{+i\frac{2\pi y}{N}} u e^{+i\frac{2\pi x}{N}} v$$

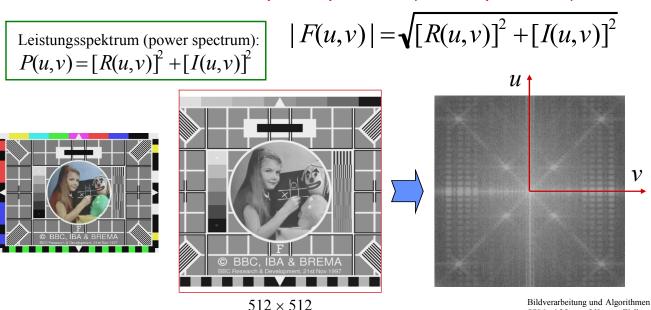


Eigenschaften der diskreten 2D-FT (2)

- ☐ in F(0,0) steht Fourierkoeff. zu 0-Frequenz ("Gleichstromanteil", DC)
- ☐ in Spalte v=10 stehen Fourierkoeffizienten, deren Wellenlängen in x-Richtung genau 10x ins Bild passen (Wellenzahl)
- □ oberhalb von v=N/2 beginnen die negativen Frequenzen
- ☐ Übergang zu physikalischen Frequenzen durch "Wrap-around-Shift" um (u0,v0)=(N/2,N/2) (fftshift in MATLAB, "Origin at image center" in ImageJ's Plugin FFTJ)

Erzeugung einer Frequenzraumdarstellung (2) Fourierspektrum (Spektrum der Ortsfrequenzen)

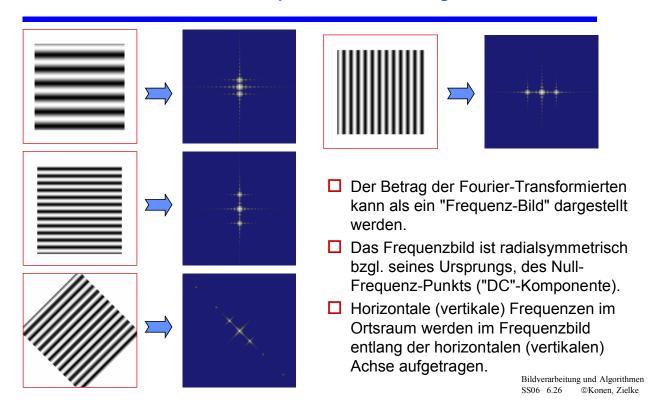
Den Betrag der komplexen Fourier-Transformierten bezeichnet man als Frequenzspektrum (kurz "Spektrum"):



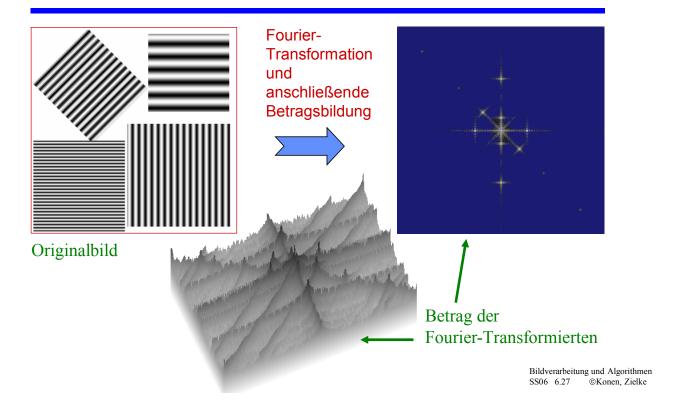
Verschiedene Sinusgitter und ihre Frequenzbilddarstellung

SS06 6.25

©Konen, Zielke



Frequenzbilddarstellung eines Bildes aus unterschiedlichen lokalen Sinusmustern



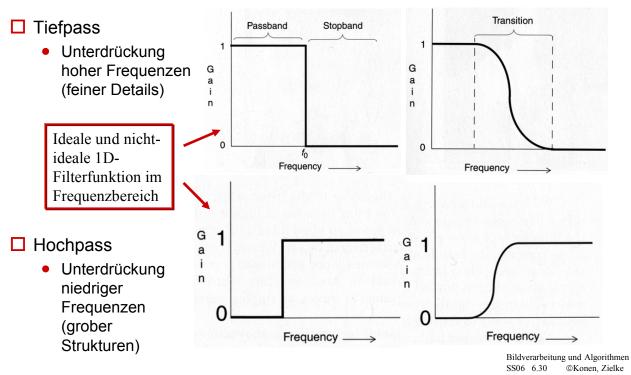
jetzt Übung FFT / Sinus Gratings

Inhalt

- ☐ Filter im Ortsraum: Die Faltung
- □ Tiefpass-Filter
- ☐ Filter im Frequenzraum: Fouriertransformation
 - 1D-Fouriertransformation
 - 2D-Fouriertransformation
- □ Anwendungen der Fouriertransformation (kurz)
 - **Bandstop**
 - **Unsharp Masking**

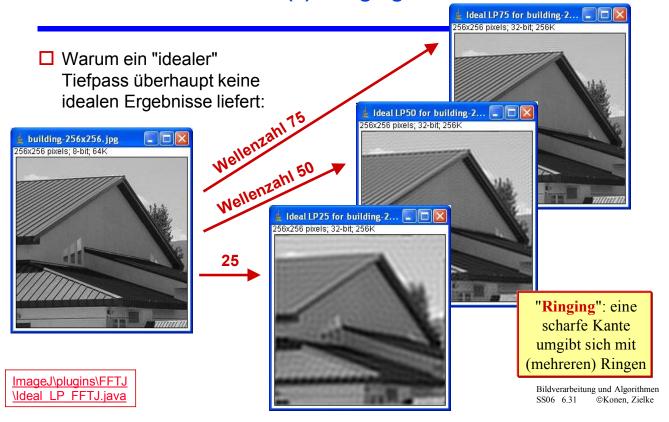
Bildverarbeitung und Algorithmen SS06 6.29 ©Konen, Zielke

Lineare Filter (1)

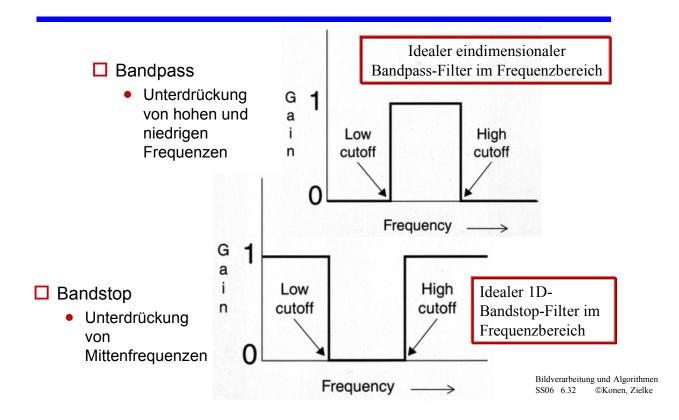


©Konen, Zielke

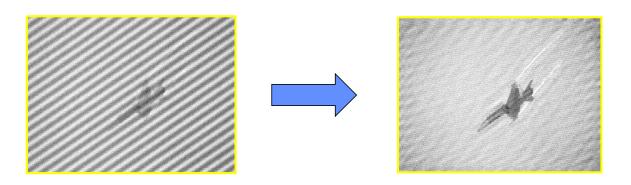
Lineare Filter (2): Ringing-Artefakte



Lineare Filter (3)



Anwendung eines Bandstop-Filters Beispiel: Bildrestauration

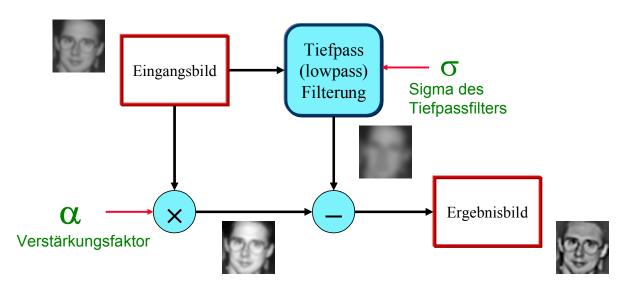


Unterdrückung der Störfrequenz

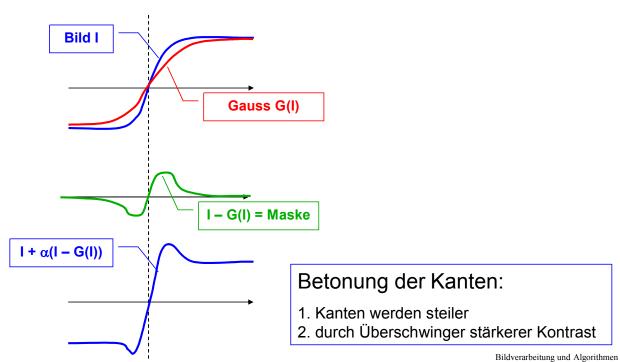
Bildverarbeitung und Algorithmen SS06 6.33 ©Konen, Zielke

Anwendung des Tiefpassfilters für das Schärfen (sharpening) eines Bildes

"Unsharp Masking" - Verfahren

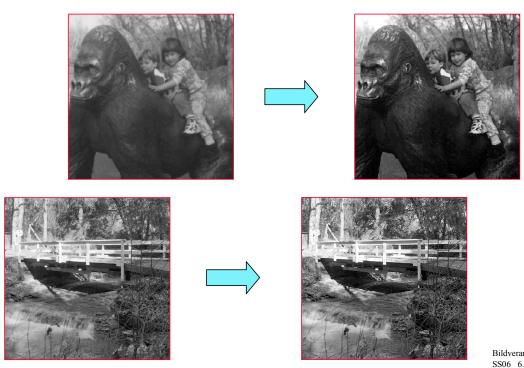


Unsharp-Masking Verfahren



SS06 6.35 ©Konen, Zielke

Unscharfe Maske (Unsharp Masking) Bildbeispiele



Bildverarbeitung und Algorithmen SS06 6.36 ©Konen, Zielke