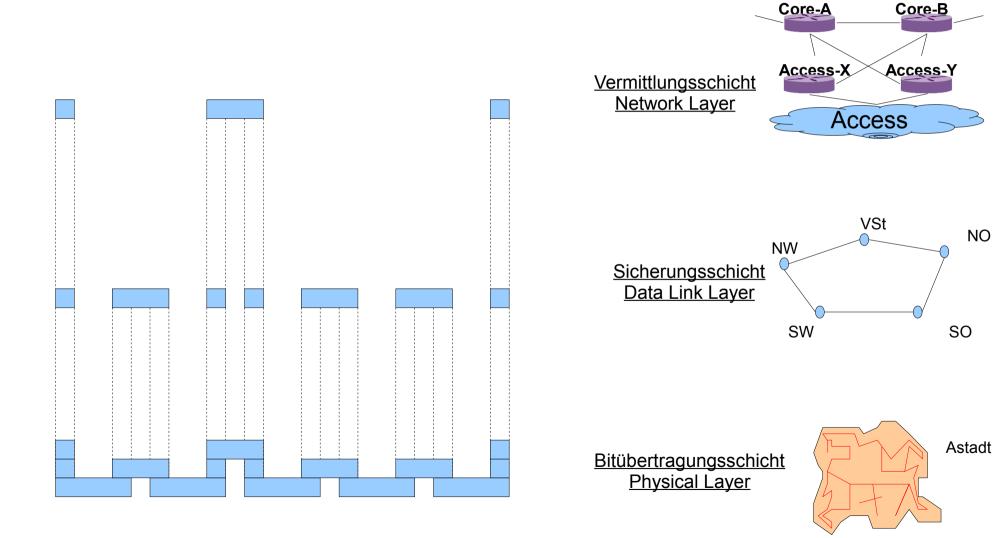
Weitverkehrsnetze

1 Einführung

- 1.1 Einordnung des Stoffgebietes, Voraussetzungen
- 1.2 Netze Beispiele und Sichtweisen
- 1.3 Schichtenmodell
- 1.4 Topologien


- 1 Einführung1.1 Einordnung des Stoffgebietes, Voraussetzungen (1)
- Womit beschäftigen wir uns in diesem Modul?
- Schwerpunkt sind Geräte und Netze und die dafür verwendeten Technologien
- Am nächsten zu praktisch aufgebauten Systemen und behandelt auch solche
- Pendant zu "LAN" aber auch mehr!!!
 - Weitverkehrsnetze gibt es für (fast) alle Arten von Telekommunikation.
 - wenn schon "WAN", dann bitte nicht nur an Rechnerdaten denken!

- 1 Einführung 1.1 Einordnung des Stoffgebietes, Voraussetzungen (2)
- Voraussetzung ist "Einführung in die Nachrichtentechnik"

1.2 Netze - Beispiele und Sichtweisen (1)

	lokales Netz LAN	Stadtnetz MAN	Access- W Netz	eitverkehrsnetz
Ausdehnung	mehrere 10100m	mehrere km 10 km	mehrere km	x km Welt
Anzahl Endstellen	einige einige 100	einige 1000	einige 1000	>>1000 x Mio
Ursprung	Datenwelt	Datenwelt	Telefonwelt TK-Welt	Telefonwelt (Telegrafie)
Beginn	ca. 1970	ca. 2000	(ca. 1980) vorher einfach Cu	ca. 1876 (ca. 1835)

1.2 Netze - Beispiele und Sichtweisen (2)

NO

1.3 Schichtenmodell (1)

	OSI-Modell
7	Anwendungsschicht Application Layer
6	Darstellungsschicht Presentation Layer
5	Sitzungsschicht Session Layer
4	Transportschicht Transport Layer
3	Vermittlungsschicht Network Layer
2	Sicherungsschicht Data Link Layer
1	Bitübertragungsschicht Physical Layer

Beispiele

Email, Bilddienst, Textdienst

Zeichensatz, Formatierung, Umwandlung Bild - Datei

Datenverbindung während der Anwendung, Wiederaufnahme nach Abbruch

Datentransport von Endstelle zu Endstelle

Datentransport Endstelle – Vermittlungsknoten - ... - Vermittlungsknoten - Endstelle

Datentransport von Knoten zu Knoten

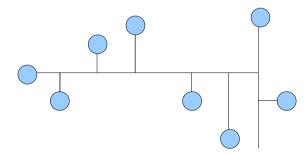
Zugang zum physikalischen Medium, physikalisches Medium

1.3 Schichtenmodell (2) (protocol stack)

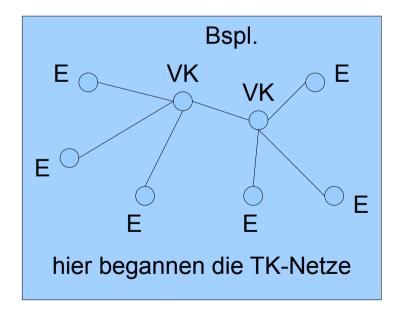
- 1 Stack für Nutzdaten user plane
- **OSI-Modell** Anwendungsschicht **Application Layer** Darstellungsschicht 6 **Presentation Layer** Sitzungsschicht 5 **Session Layer** Transportschicht 4 Transport Layer Vermittlungsschicht 3 **Network Layer** Sicherungsschicht 2 Data Link Layer Bitübertragungsschicht **Physical Layer**
- 1 Stack für Zeichengabe control plane

	OSI-Modell
7	Anwendungsschicht Application Layer
6	Darstellungsschicht Presentation Layer
5	Sitzungsschicht Session Layer
4	Transportschicht Transport Layer
3	Vermittlungsschicht Network Layer
2	Sicherungsschicht Data Link Layer
1	Bitübertragungsschicht Physical Layer

- 1 Stack für Management Management plane
- **OSI-Modell** Anwendungsschicht **Application Layer** Darstellungsschicht 6 **Presentation Layer** Sitzungsschicht **Session Layer** Transportschicht 4 **Transport Layer** Vermittlungsschicht **Network Layer** Sicherungsschicht Data Link Layer Bitübertragungsschicht **Physical Layer**


1.4 Topologien (1)

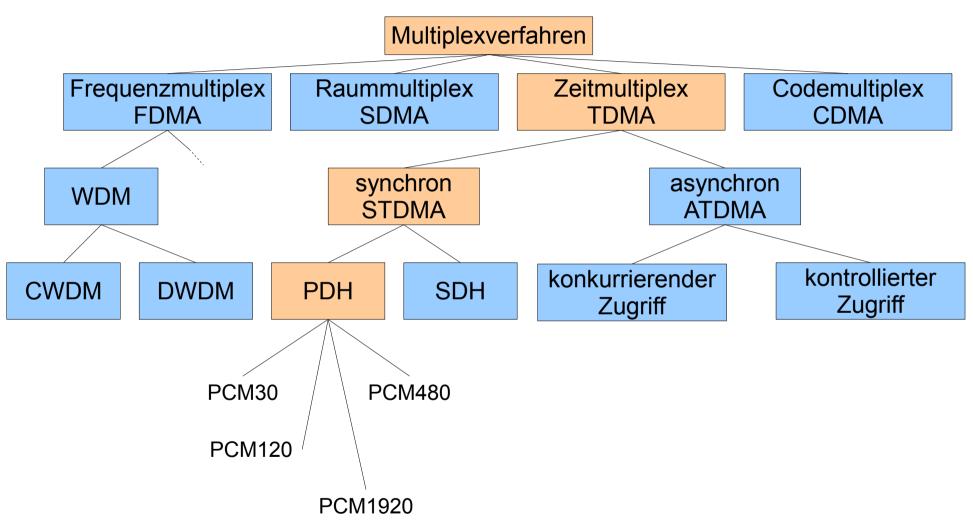
Netz(werk): $n \times n > 2$


n Kanten n > 1

Topologie: Bus und Ähnliche (shared medium)

Bspl.

Punkt-zu-Punkt


1.4 Topologien (2)

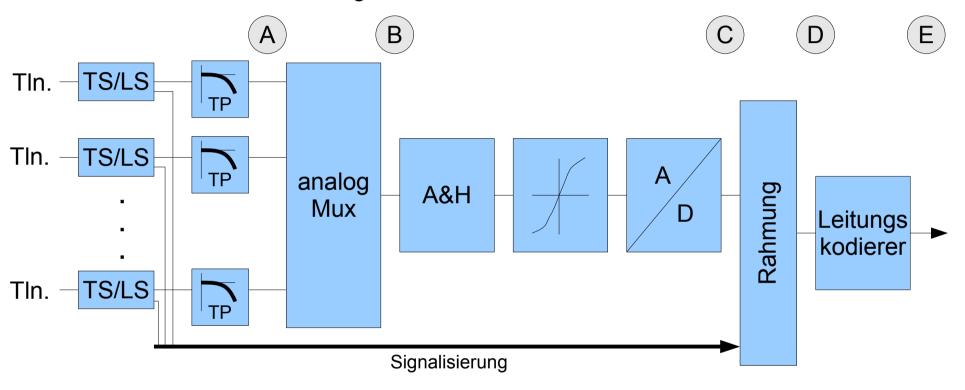
Topologie: Linie, Bus	Stern	Ring	Maschen	Zelle

Weitverkehrsnetze

- 2 PDH Plesiochronous Digital Hierarchy
 - 2.1 PCM 30
 - 2.2 Hierarchiestufen der PDH
 - 2.3 Eigenheiten der PDH
 - 2.4 Einordnung von Richtfunk

2 PDH - Plesiochronous Digital Hierarchy 2.1 PCM 30 (1)

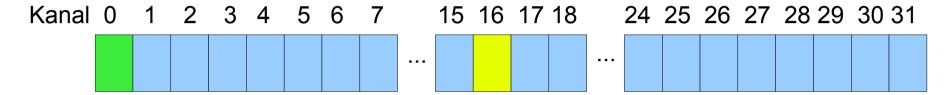
 Zeitmultiplexverfahren zur Mehrfachnutzung von Übertragungsstrecken


2.1 PCM 30 (2)

Warum jetzt noch PDH?

Bild: Signalverläufe an verschiedenen Stellen der Verarbeitung

2.1 PCM 30 (3)


Funktionsblöcke, Sendezweig

TS (SLIC)/LS: TP:

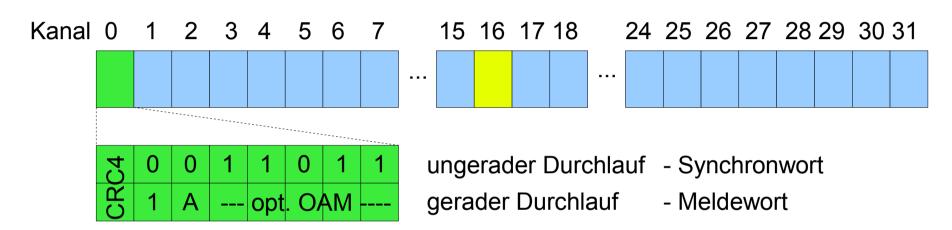
2.1 PCM 30 (4)

(D) Rahmenaufbau

jeder Abschnitt ein Zeitschlitz mit 8 bit → je Zeitschlitz ein Kanal

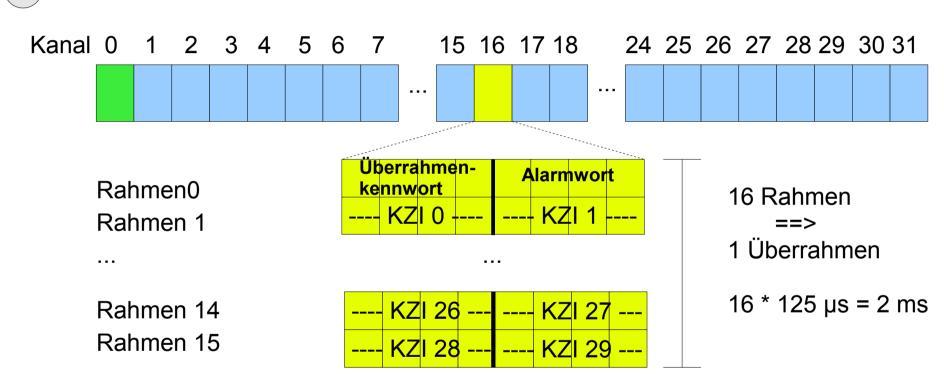
K1...15, K17 – K31: 30 Kanäle Nutzdaten

K0, K16: 2 Kanäle Steuerdaten


8000 Werte je Kundenkanal / Sekunde → 8000 Rahmen / Sekunde → Rahmendauer = 125 µs

32 Kanäle / Rahmen * 8 bit / Kanal = 256 bit / Rahmen

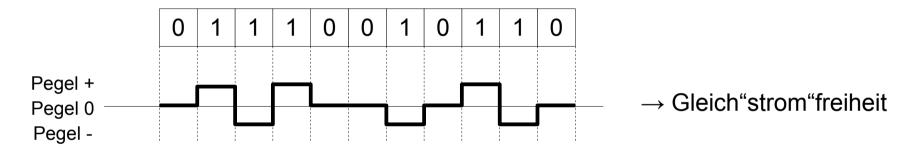
256 bit / Rahmen * 8000 Rahmen / s = 2.048.000 bit / s = 2,048 Mbit/s
Achtung!!! 1 Mbit = 10⁶ bit


2.1 PCM 30 (5)

D Rahmenaufbau – Kanal 0

2.1 PCM 30 (6)

D Rahmenaufbau – Kanal 16


KZI n - Kennzeicheninformation des Kanals n

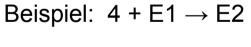
2.1 PCM 30 (7)

E

Leitungskodierung

AMI – Alternated Mark Inversion - "Zwischenstufe"

HDB3 – High Density Bipolar, max. 3 Nullen in Folge


- Wenn nach drei mal 0 eine weitere 0 folgt, so wird eine 1 mit der falschen Polarität gesendet. → genug Taktinformation
- Unterbestimmten Bedingungen wird unter Verletzung obiger Regel eine weitere 0 erkennbar als 1 gesendet. → Gleich"strom"freiheit

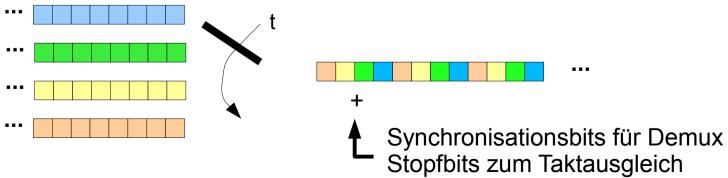
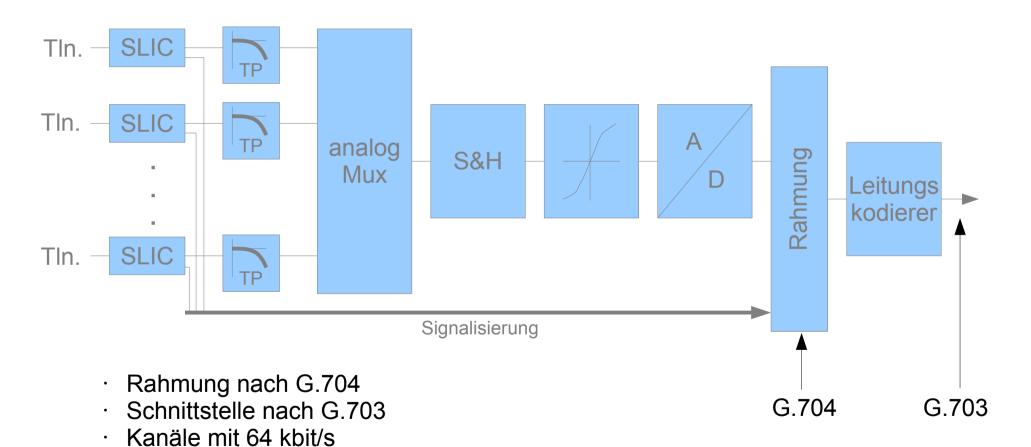

2.1 PCM 30 (8)

Bild: Empfangszweig, im Wesentlichen Umkehr Sendezweig

2.2 Hierarchiestufen der PDH

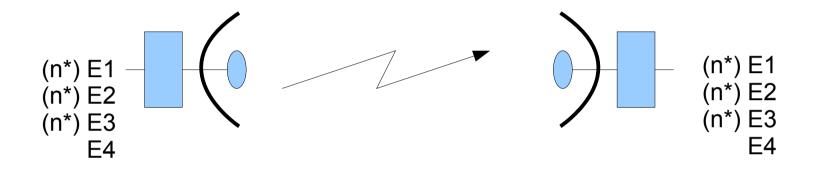
Europa			Norda	merika		Japan		
Stufe	Bitrate	Kanäle je 64 kbit/s	Stufe	Bitrate	Kanäle je 64 kbit/s	Stufe	Bitrate	Kanäle je 64 kbit/s
E1, PCM 30	2,048 Mbit/s ± 50 ppm		T1	1,544 Mbit/s ± xx ppm	24	J1	1,544 Mbit/s ± xx ppm	24
E2, PCM 120	8,448 Mbit/s ± 30 ppm		T2	6,312 Mbit/s ± xx ppm	96 (4 * 24)	J2	6,312 Mbit/s ± xx ppm	96 (4 * 24)
E3, PCM 480	34,368 Mbit/s ± 20 ppm		Т3	44,736 Mbit/s ± xx ppm	672 (7 * 96)	J3	32,064 Mbit/s ± xx ppm	480
E4, PCM 1920	139,264 Mbit/s ± 15 ppm		T4	274,176 Mbit/s ± xx ppm	4032 (6 * 672)	J4	97,728 Mbit/s ± xx ppm	1440
E5, PCM 7680	564,992Mbit/s ± 15 ppm		T5	400,352 Mbit/s ± xx ppm	5760 (60 * 96)	J5	564,992Mbit/s ± xx ppm	7680

2.3 Eigenheiten der PDH (1)


Jede Strecke nur in sich synchron:

 Zum Ein- / Ausstieg "unterwegs" kompletten Durchlauf der Hierarchiestufen:

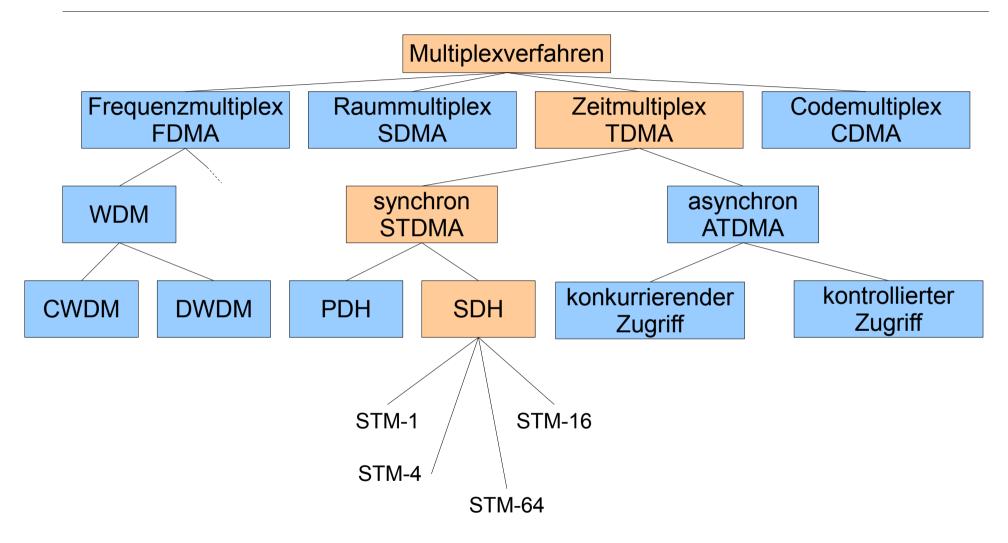
 eingeschränkte Fernüberwachung und eingeschränktes Management über das Leitungssignal:


2.3 Eigenheiten der PDH (2)

Was ist heute noch aktuell?

- · A-Kennlinie (13 Segment-Kennlinie)
- · und ..., wie man so etwas auch mit einfachen Mitteln machen kann

2.4 Einordnung von Richtfunk



Weitverkehrsnetze

3 SDH - Synchronous Digital Hierarchy

- 3.1 Grundgedanken und Entwicklungsziel
- 3.2 Grundstruktur Netz und Taktung
- 3.3 Hauptfunktionen und Geräte
- 3.4 Rahmenstruktur
- 3.5 Einbindung anderer Protokolle
- 3.6 typische Netzstrukturen
- 3.7 Management

3 SDH - Synchronous Digital Hierarchy 3.1 Grundgedanken und Entwicklungsziel (1)

 Zeitmultiplexverfahren zur Mehrfachnutzung von Übertragungsstrecken

3.1 Grundgedanken und Entwicklungsziel (2)

Nachteil PDH:

- nur plesiochron → begrenztes Kaskadieren von Strecken
 - → Multiplexen mit Stopfbits → Jitter → begrenztes Kaskadieren bei Multiplexen
 - → Multiplexen mit Stopfbits → Ein-/ Ausstieg unterwegs nur über Durchlauf durch Demultiplexer und Multiplexer

Anforderungen an besseres System:

- synchron
- keine Stopfbits

SDH - synchrone digitale Hierarchie

3.1 Grundgedanken und Entwicklungsziel (3)

- SDH zuerst f
 ür Hauptstrecken vorgesehen → Auswirkung auf Entwurf
 - → große Datenraten
 - → Erzeugen von "schmalen" multiplexten Datenströmen andersweitig
 - → nur Multiplex von fertigen PCM-Datenströmen oder andersweitig erzeugten "dickeren" digitalen Datenströmen

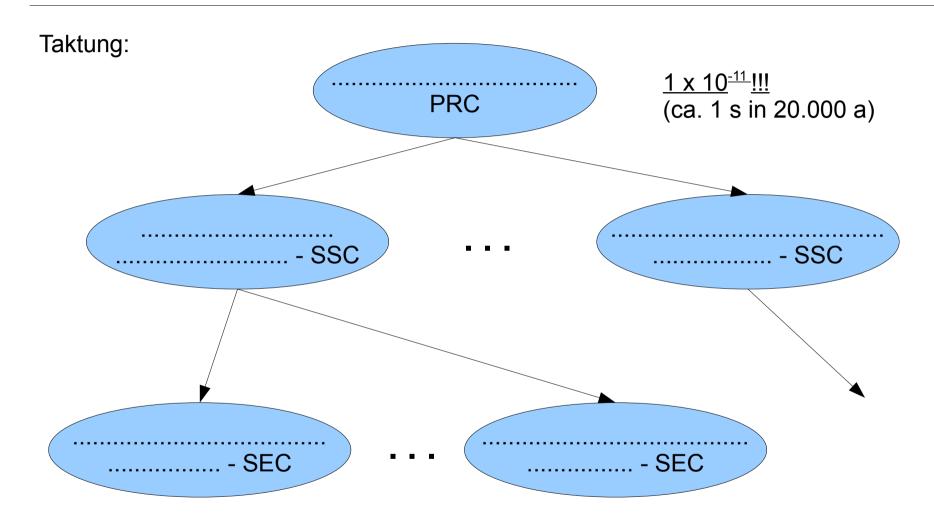
von Hause aus große Datenraten

→ genug Platz für <u>OAM</u>-Daten

moderne Gerätetechnik

- → lokal im Gerät genug Kapazität für OAM-Funktionen
- → Management lokal über temporär angeschlossenen PC und / oder
- → Management remote über Managementsystem

Synchronität und moderne Gerätetechnik


→ leistungsfähige Schutzmechanismen gegen Ausfälle

3.1 Grundgedanken und Entwicklungsziel (4)

SDH – Daten zur Geschichte der Entwicklung und Einführung

1985	Beginn der Entwicklung SONET → ANSI-SONET
1986/ 88	Beginn der Entwicklung u. Normung SONET / SDH weltweit \rightarrow ITU-T
1988/ 90	Beginn der Entwicklung u. Normung SDH in Europa $^{^*)} o $ ETSI
	*) Teilmenge der weltweiten Normung
1991/ 92	Beginn des breiteren Einsatzes in den Netzen
1996	bei Neuinvestitionen weltweit überwiegt SONET/ SDH gegenüber herkömmlichen Techniken
2000	rund 10,8 Mrd. \$ Investition in SONET/ SDH weltweit stehen rund 2,2 Mrd. \$ Investition in herkömmliche Technik gegenüber.

3.2 Grundstruktur Netz und Taktung (1)

Bedeutung Takt !!!

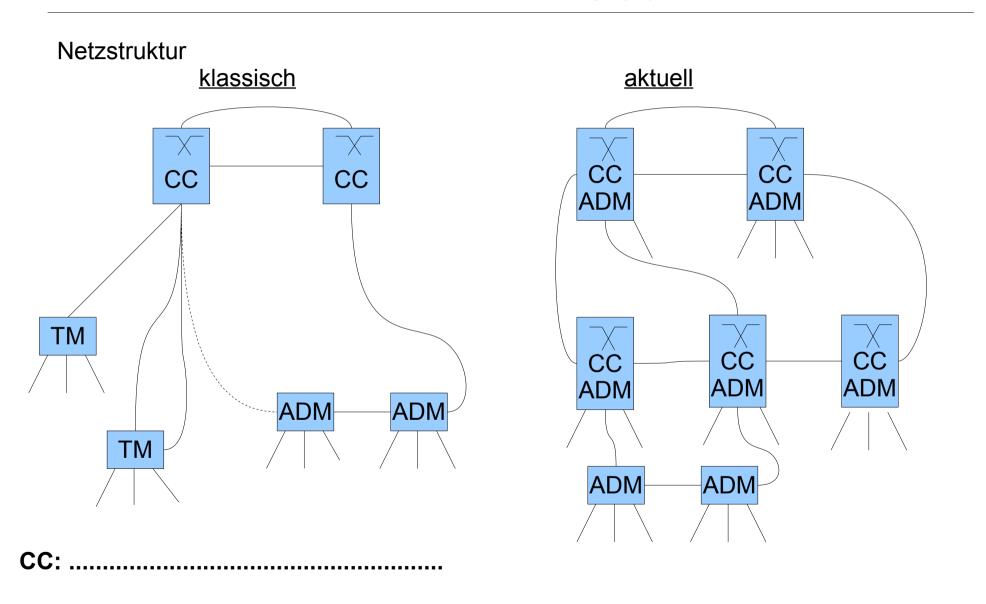
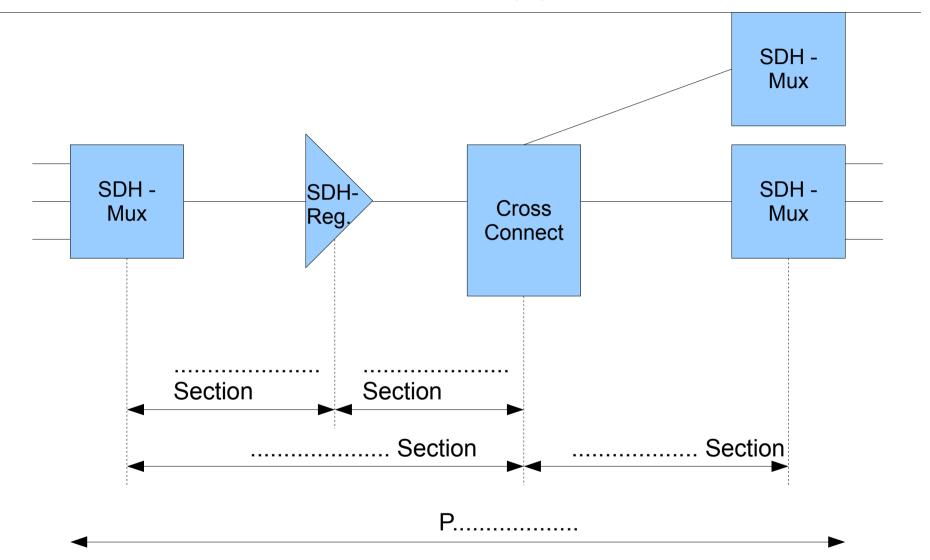
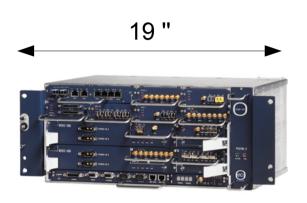

3.2 Grundstruktur Netz und Taktung (2)

Bild Taktung: Taktverteilung im Netz

Zusammenschaltung mehrerer Netze


Methoden, Wege

3.2 Grundstruktur Netz und Taktung (3)


ADM:

3.3 Hauptfunktionen und Geräte (1)

(Erklärung der einzelnen Netzelemente, Aufteilung "früher" und heute)

3.3 Hauptfunktionen und Geräte (2)

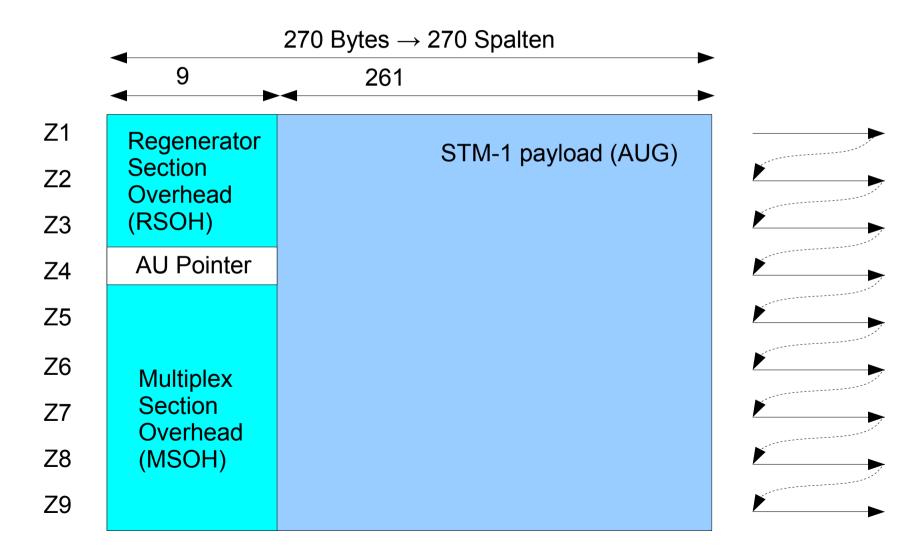
- ECI XDM-100
 - STM-1 / STM-4 / STM-16
 - OC-3 / OC-12 / OC-48
 - OTN G.709
 - E1, E3
 - FE / GE / 10GE

• ECI XDM-2000

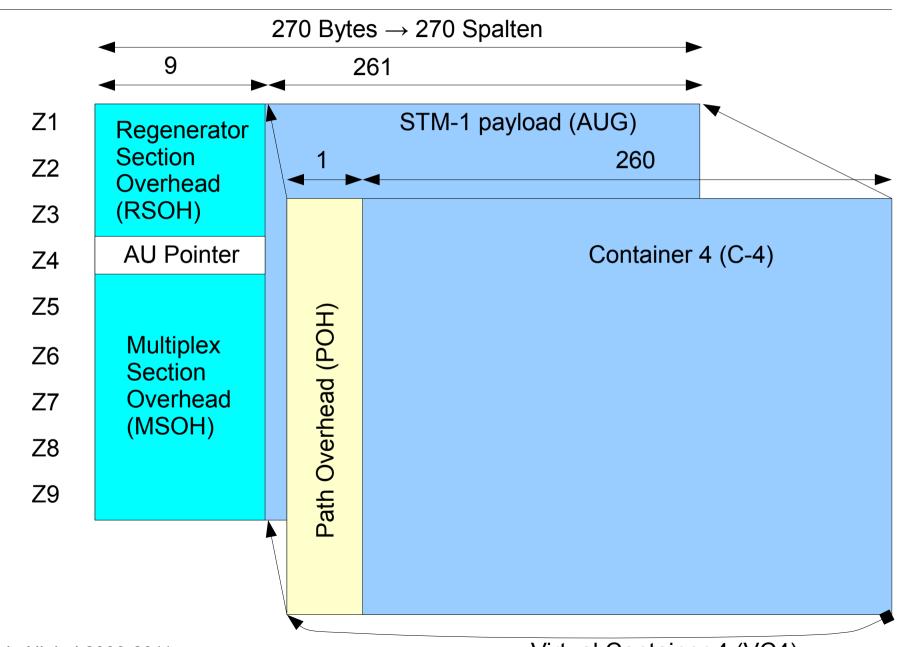
(Daten im Moment nicht verfügbar)

Quelle: http://www.ecitele.com/Products/NG-SDHSONET/Pages/default.aspx 2.9.2011

3.3 Hauptfunktionen und Geräte (3)

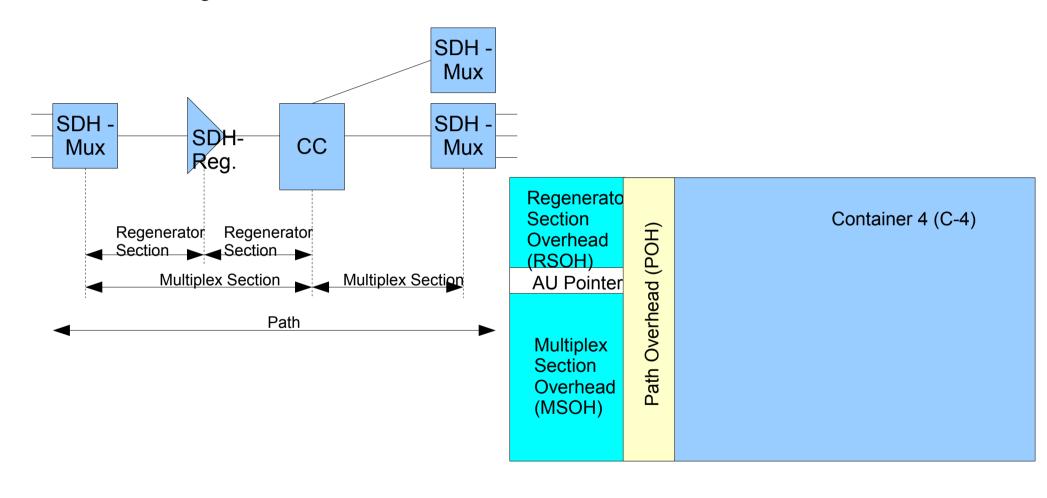


- hiT 7020
 - STM-1
 - STM-4
 - E1, Ethernet


- hiT 7070
 - STM-1 ... STM-64
 - E1, Ethernet

3.4 Rahmenstruktur (1)

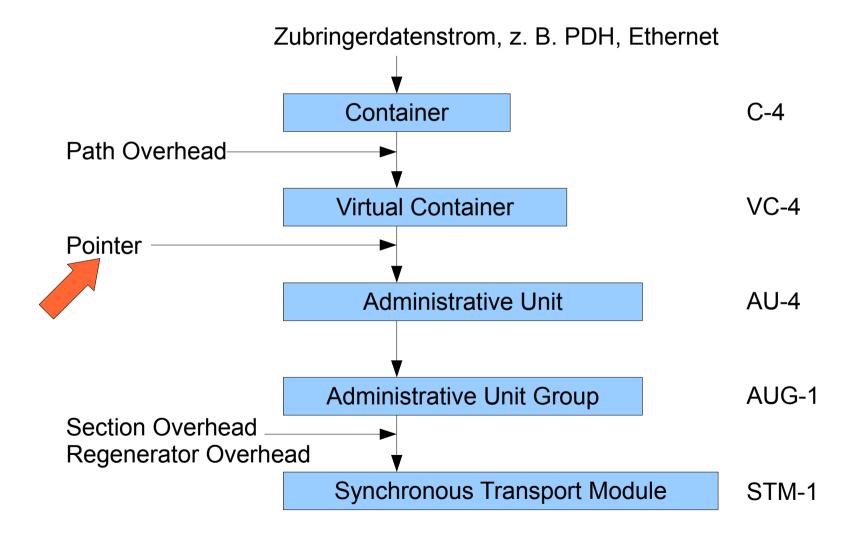
- Der STM-1-Rahmen (Synchronous Transport Module 1)
 - Die 8000 / Sekunde bleiben uns erhalten!



3.4 Rahmenstruktur (2)

3.3 Rahmenstruktur (3)

Bezüge der Gerätefunktionen zu den Rahmenteilen



3.4 Rahmenstruktur (4)

- Der STM-1-Rahmen ist die Basiseinheit der SDH. Er enthält einen Container 4.
- Zubringerdatenströme können im Container 4 (C-4) untergebracht werden.
 260 * 9 Byte * 8 Bit/Byte * 8000/s = * 8000/s =
- Größere Zubringerdatenströme → Aufteilung auf mehrere STM-1-Rahmen, gleichzeitig "parallel" übertragen (siehe nächster Punkt). concatenated Mode – logische Verbindung mehrerer Container
- Mehrere STM-1-Datenströme können zu einem STM-n-Datenstrom zusammengefasst werden (n = 4, 16, 64, 256). Das wird allgemein zur Erhöhung der Übertragungskapazität einer Leitung genutzt, nicht nur für den concatenated Mode.
- Die einzelnen STM-1-Datenströme werden byteweise zu STM-n multiplext.
 Die Rahmenanfänge sind synchron zueinander ausgerichtet.
- Einfügen nach unterschiedlicher Laufzeit:

3.4 Rahmenstruktur (5)

Entstehung des STM-Rahmens

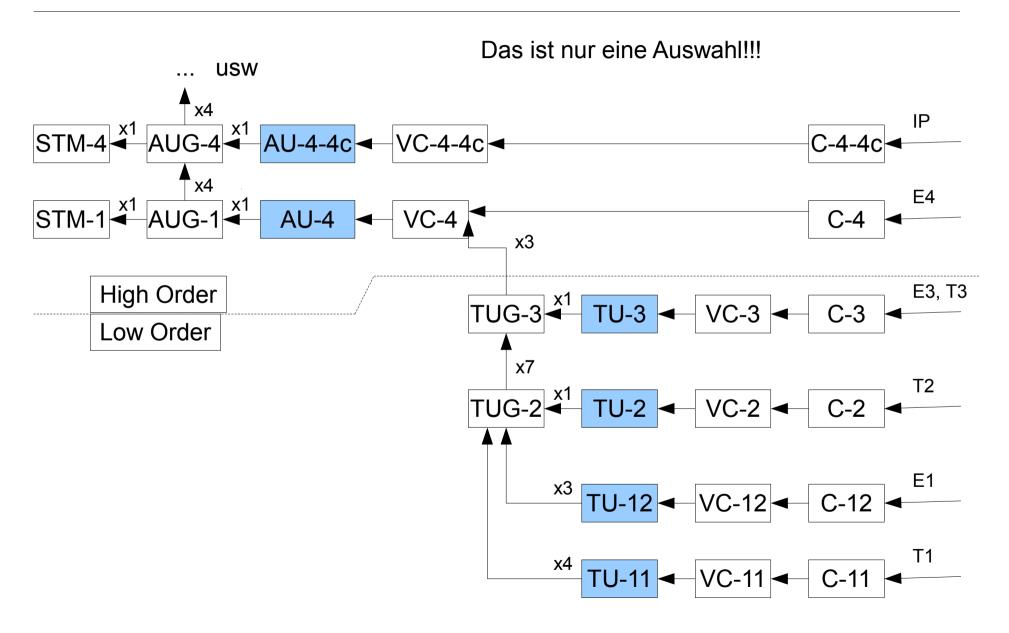
3.4 Rahmenstruktur (6)

- Verwendung der Overhead-Bereiche
 - Section Overhead Multiplex Section Overhead (MSOH)
 - Nur Multiplexern und CC zugänglich MUX – MUX; MUX – CC; CC - CC
 - 5 x 9 Byte x 64 kBit/s = 2,8 MBit/s
 - Prüfinformation (Fehlererkennung)
 - Steuerung Redundanzschaltung
 - Datenkanal für Management, 576 kBit/s
 - Kennzeichen Taktqualität
 - Dienstsprachkanal, 64 kBit/s
 - (Reserve)

3.4 Rahmenstruktur (7)

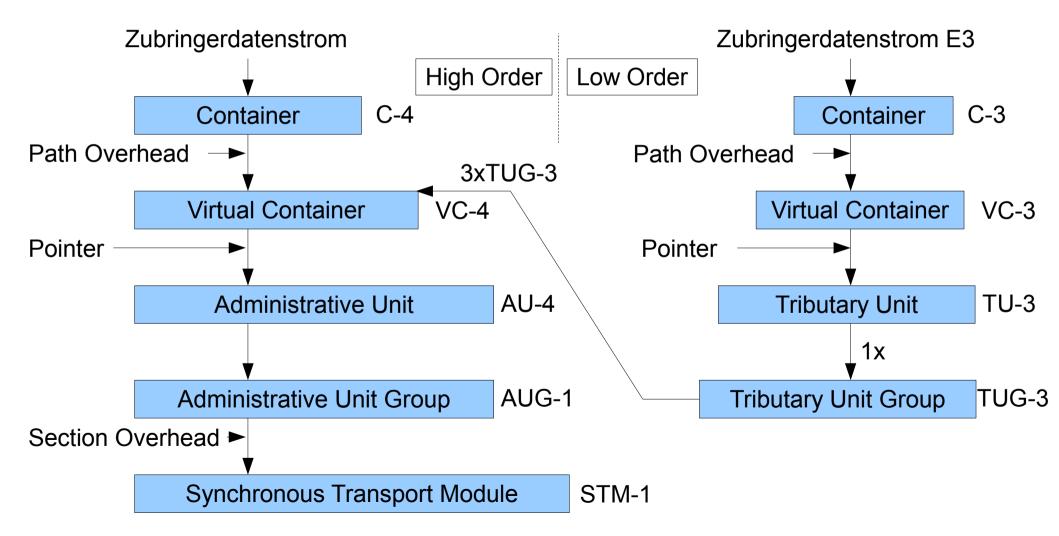
- Verwendung der Overhead-Bereiche
 - Section Overhead Regenerator Section Overhead (MSOH)
 - Allen Geräten zugänglich
 - 3 x 9 Byte x 64 kBit/s = 1,7 Mbit/s
 - Rahmensynchronisation
 - Übertragungsüberwachung (Section Trace)
 - Prüfinformation (Fehlererkennung)
 - Wartungskanal (ID; Fehlerrate)
 - Management- und Statusinformationen
 - Dienstsprachkanal f

 ür Regeneratoren, 64 kBit/s

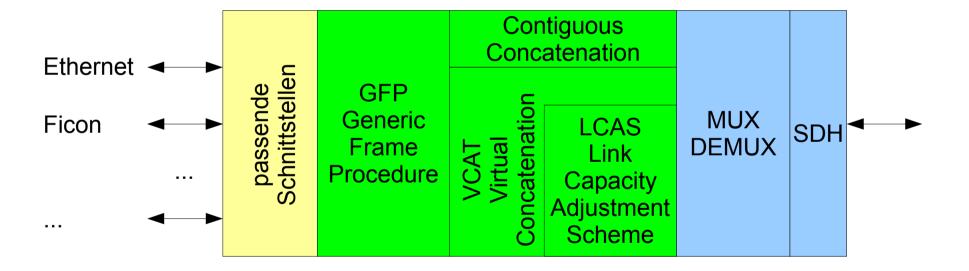

3.4 Rahmenstruktur (8)

- Verwendung der Overhead-Bereiche
 - Path Overhead (POH)
 - beim Mapper zum VC, mit dem VC bis zum Demapper (SDH-Endstelle zu SDH-Endstelle)
 Informationen, die zur SDH – Ende – Ende – Verbindung gehören
 - Prüfinformation (Fehlererkennung)
 - Information über Zusammensetzung Container
 - Rückmeldung der Übertragungsfehler
 - Wartungskanal
 - Positionsanzeiger f
 ür Nutzlast
 - Steuerung Redundanzschaltung

3.5 Einbindung anderer Protokolle (1)


- Was ist, wenn der Container mit einem Rahmen der Zubringerdaten nicht voll wird?
 Sind Stopfbits hier weniger gefährlich als bei der PDH?
- Wie bekommen wir noch kleinere Rahmen von Zubringerdaten im Container unter?
 - V1 noch mehr Stopfbits?
 - V2 Unterteilung des Platzes ?

3.5 Einbindung anderer Protokolle (2)


3.5 Einbindung anderer Protokolle (3)

 Das bewährte der Kapselung in den "höheren" Bereichen wird für die unteren Kapazitätsbereiche analog angewandt.

3.5 Einbindung anderer Protokolle (4)

• Ethernet over SDH - EoSDH / auch Ficon, Escon, Fiber channel

3.5 Einbindung anderer Protokolle (5)

- Ethernet over SDH EoSDH / auch Ficon, Escon, Fiber channel
 - 1. Aufgabe: <u>Anpassen und Einpacken</u> → <u>Generic Framing Procedure GFP</u>
 - Asynchrone Daten mit Burstcharakter empfangen
 - Daten mit allgemeinem Rahmen versehen

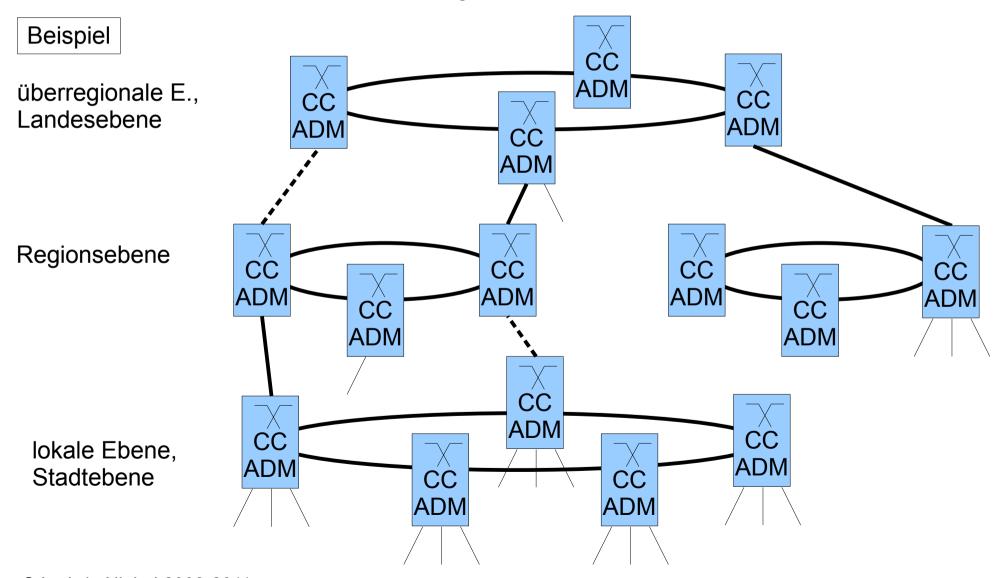
 Daten auf synchronen Kanal geben → Geschwindigkeitsanpassung, ggf. Stopfbits

alternativ zu GFP können noch LAPS oder HDLC vorkommen

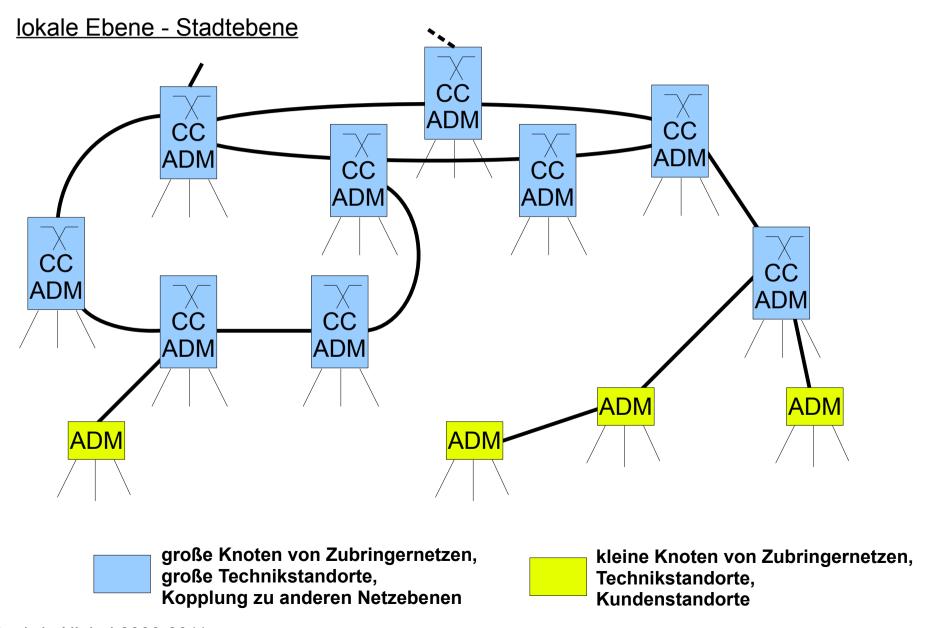
3.5 Einbindung anderer Protokolle (6)

- Ethernet over SDH EoSDH / auch Ficon, Escon, Fiber channel
 - 2. Aufgabe: benötigte Kapazität durch ein oder mehrere Container bereitstellen,
 Bei mehr als ca. 140 Mbit/s reicht ein C-4 nicht aus (G-Ethernet).
 - → Concatenation: mehrere Container werden verbunden
 - Contiguous Concatenation feste, starr Verbindung; alle beteiligten
 Knoten müssen das beherrschen; feste
 "Schrittweiten"
 z. B. 1G Ethernet → VC-4-16C
 - Virtual Concatenation VCAT Daten werden auf mehrere, formal selbständige V-Container verteilt; unterwegs einfache Behandlung, Kapazität besser anpaßbar, auch kleine VC wie z.B. VC-12 z. B. 1G Ethernet → VC-4-7v aber auch < 100 oder 1000 MBit/s!!

Steuerdaten in den Bereichen des Path Overhead


Problem der unterschiedlichen Wege! Pufferung → Verzögerung Kompensation bis 512 ms

3.5 Einbindung anderer Protokolle (7)


- Ethernet over SDH EoSDH / auch Ficon, Escon, Fiber channel
 - 3. Aufgabe: <u>Übertragungskapazität flexibel anpassen LCAS</u>: Link Capacity Adjustment Scheme
 - Ende-zu-Ende, d. h., Abstimmung zwischen den beiden Multiplexern, die den Zubringerverkehr ankoppeln
 - Aus einem Vorrat an freien Containern können quasi-dynamisch welche einem Link hinzugefügt und wieder entfernt werden.
 - Auslösung kann automatisch erfolgen oder auch von Hand gesteuert.

3.6 typische Netzstrukturen (1)

<u>mehrere Ebenen – hierarchische Strukturen</u>
Anzahl der Ebenen nicht direkt vorgeschrieben

3.6 typische Netzstrukturen (2)

3.6 typische Netzstrukturen (3)

- Hierarchische Strukturen mehrere Ebenen
 - Vorteile gegenüber flachen Strukturen:
 - lokaler Verkehr bleibt im jeweiligen lokalen Netzbereich (auch im Fehlerfall)
 - bei nicht lokalem Verkehr geringere maximale Anzahl zu durchlaufender Netzelemente – technische Begrenzungen
 - geringere Anzahl von Netzelementen und Verbindungen im jeweiligen Ring bringt geringeres Risiko von Doppelfehlern
 - paßt zum Prinzip der Taktverteilung

(Beispiele hierarchisch - flach)

3.7 Management (1)

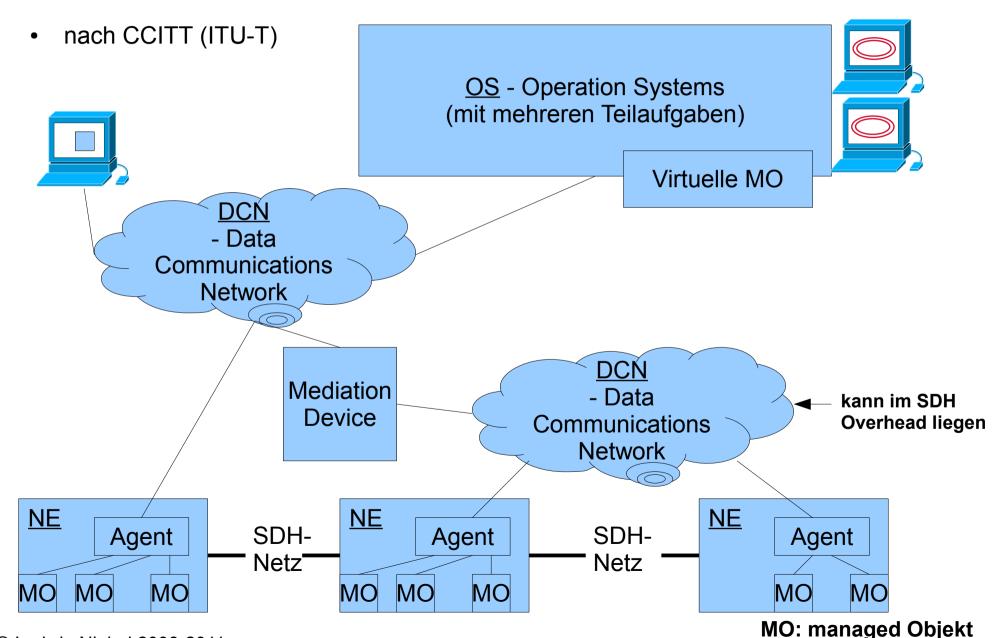
- Management hier allgemein kontrollieren und beeinflussen
- für TK genauer nach CCITT (ITU-T):
 Telecommunications Management Network TNM

Funktion ist OAM&P

Beispiele

3.7 Management (2)

Aufgaben aus verschiedenen Perspektiven gesehen:



- Beispiele für
 - A:
 -
 - B:

.....

- Für A reicht Local Craft Terminal, aber Anwesenheit vor Ort!!!
- für B bedarf es eines zentralen Managementsystems, A-Aufgaben meist gleich mit

3.7 Management (3)

© Ludwig Niebel 2008-2011

Dieses Lehrmaterial ist ausnahmslos für Lehrzwecke an der Fachhochschule Jena - Fachbereich ET – vorgesehen!