MATRIZEN

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

- 1) (m,n) wird als **Typ der Matrix** bezeichnet.
- 2) Eine Matrix vom Typ (1,n) heißt **Zeilenvektor** (-matrix). Eine Matrix vom Typ (m,1) heißt **Spaltenvektor** (-matrix).
- 3) Eine Matrix vom Typ (n,n) heißt quadratische Matrix der Ordnung n.
- 4) In quadratischen Matrizen stellen die Elemente a_{ii} die **Hauptdiagonale** dar.
- 5) Zwei Matrizen A und B heißen gleich, wenn
 - a) sie vom gleichen Typ sind und
 - b) $a_{ik} = b_{ik}$ für alle i und k gilt.
- 6) **Nullmatrix 0**: Alle Elemente sind gleich Null. Für jeden Typ gibt es genau eine Nullmatrix.

7)
$$\mathbf{E}_{(n,n)} = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 & 0 \\ 0 & 1 & 0 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 0 & 1 \end{pmatrix}$$
 ist die **Einheitsmatrix** n-ter Ordnung

8) Transponierte Matrix:

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}, \qquad \mathbf{A}^{T} = \begin{pmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{12} & a_{22} & \dots & a_{m2} \\ \dots & \dots & \dots & \dots \\ a_{1n} & a_{2n} & \dots & a_{mn} \end{pmatrix}$$

9) Adjungierte Matrix: $A^* = (\overline{A})^T$

OPERATIONEN MIT MATRIZEN

Addition und Subtraktion (Voraussetzung: Typ(A) = Typ(B))

$$\mathbf{A} \pm \mathbf{B} = \begin{pmatrix} a_{11} \pm b_{11} & a_{12} \pm b_{12} & \dots & a_{1n} \pm b_{1n} \\ a_{21} \pm b_{21} & a_{22} \pm b_{22} & \dots & a_{2n} \pm b_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} \pm b_{m1} & a_{m2} \pm b_{m2} & \dots & a_{mm} \pm b_{mm} \end{pmatrix}$$

Multiplikation mit Zahlen

$$\alpha A = \begin{pmatrix} \alpha a_{11} & \alpha a_{12} & \dots & \alpha a_{1n} \\ \alpha a_{21} & \alpha a_{22} & \dots & \alpha a_{2n} \\ \dots & \dots & \dots \\ \alpha a_{m1} & \alpha a_{m2} & \dots & \alpha a_{mn} \end{pmatrix}$$

Multiplikation von Matrizen

Voraussetzung: Typ(\mathbf{A})=(m,n) und Typ (\mathbf{B})=(n,s)

Man sagt: A muß mit B verkettet sein.

$$C = A \cdot B = AB$$
, wenn

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + ... + a_{in}b_{nj}$$
, $i = 1,2,...,m;$
 $j = 1,2,...,s$

Rechenregeln für Matrizenmultiplikation:

- 1) A(BC) = (AB)C Assoziativgesetz
- 2) A(B+C) = AB + AC (A+B)C = AC + BC Distributivgesetze
- AE = A = EA
- 4) $\alpha(AB) = (\alpha A)B = A(\alpha B)$
- $(AB)^{T} = B^{T}A^{T}$
- 6) Es gibt sogenannte **Nullteiler**, das sind Matrizen $A \neq 0, B \neq 0$, für die AB = 0 oder BA = 0 ist.

SPEZIELLE QUADRATISCHE MATRIZEN

Diagonalmatrizen:

$$\mathbf{D}_{(n,n)} = \begin{pmatrix} d_1 & 0 & 0 & \dots & 0 & 0 \\ 0 & d_2 & 0 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 0 & d_n \end{pmatrix}$$

Obere Dreiecksmatrizen: $(a_{ij} = 0 \text{ für alle } i > j).$

Untere Dreiecksmatrizen: $(a_{ij} = 0 \text{ für alle } i < j).$

Symmetrische und hermitesche Matrizen:

Eine reelle Matrix A heißt symmetrisch, wenn sie mit ihrer Transponierten übereinstimmt:

$$A = A^{T}$$

Eine komplexe Matrix A heißt hermitesch, wenn sie mit ihrer Adjungierten übereinstimmt:

$$A = A^*$$

Antisymmetrische und antihermitesche Matrizen:

Eine reelle Matrix A heißt antisymmetrisch (schiefsymmetrisch), wenn $A = -A^{T}$.

Eine komplexe Matrix A heißt antihermitesch (schiefhermitesch), wenn $A = -A^*$.

Orthogonale Matrizen:

Eine Matrix A heißt orthogonal, wenn gilt: $AA^T = A^TA = E$

INVERSE MATRIX

Die Matrizen A und X heißen zueinander invers, wenn

$$AX = XA = E$$

gilt.

Schreibweise: $X = A^{-1}$.

Inverse einer Matrix n-ter Ordnung:

$$A = \begin{pmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ \dots & \dots & \dots & \dots \\ A_{n1} & A_{n2} & \dots & A_{nn} \end{pmatrix} , \qquad A^{-1} = \frac{1}{\det(A)} \cdot \begin{pmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ \dots & \dots & \dots & \dots \\ A_{n1} & A_{n2} & \dots & A_{nn} \end{pmatrix}^{T}$$

Voraussetzung: $det(A) \neq 0$

Spezialfall n=2:

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} , \qquad A^{-1} = \frac{1}{\det(A)} \cdot \begin{pmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{pmatrix}$$

Voraussetzung: $det(A) \neq 0$

DETERMINANTEN I

$$\det(\mathbf{A}) = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} = a_{1j} \cdot \mathbf{A}_{1j} + a_{2j} \cdot \mathbf{A}_{2j} + \dots + a_{nj} \cdot \mathbf{A}_{nj}$$

Dabei sind die A_{ij} die Adjunkten zu den Elementen a_{ij} .

Spezialfälle

n=2:
$$\det(A) = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11} \cdot a_{22} - a_{12} \cdot a_{21}$$

n=3 (Regel von Sarrus):

$$\det(A) = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33}$$

DETERMINANTEN II

Rechenregeln und Eigenschaften

- 1. Vertauscht man zwei Spalten, so ändert sich das Vorzeichen der Determinante.
- 2. Besteht eine Spalte nur aus Nullen, so ist die Determinante gleich Null.
- 3. Sind **A** und **B** Matrizen gleicher Ordnung, die sich nur in der j-ten Spalte unterscheiden, so gilt

$$|A| + |B| = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1j} + b_{1j} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2j} + b_{2j} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots & & \vdots \\ \vdots & \ddots & & \ddots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nj} + b_{nj} & \dots & a_{nn} \end{vmatrix}$$

4. Multipliziert man eine Spalte mit einer Zahl, so ändert sich auch die Determinante um diesen Faktor.

Schlussfolgerung: $det(\alpha A) = \alpha^n \cdot det(A)$.

- 5. Sind in A zwei Spalten identisch, so ist die det(A)=0.
- 6. Addiert man zu einer Spalte ein Vielfaches einer anderen Spalte, so ändert sich die Determinante nicht.
- 7. Ist **A** eine Dreiecksmatrix, so ist $det(A) = a_{11}a_{22}...a_{nn}$. Schlussfolgerung: det(E)=1
- 8. $det(A) = det(A^T)$
- 9. $det(A \cdot B) = det(A) \cdot det(B)$

LINEARE GLEICHUNGSSYSTEME I

$$a_{11}X_1 + a_{12}X_2 + ... + a_{1n}X_n = b_1$$

$$a_{21}X_1 + a_{22}X_2 + ... + a_{2n}X_n = b_2$$
......
$$a_{m1}X_1 + a_{m2}X_2 + ... + a_{mn}X_n = b_m$$

bzw. in Matrizenform:

$$A \cdot x = b$$

Ein lineares Gleichungssystem Ax = b hat entweder

- genau eine (wenn Rg(A) = Rg(A,b) = n) oder
- unendlich viele (wenn Rg(A) = Rg(A,b) < n) oder
- gar keine Lösung (wenn $Rg(A) \neq Rg(A,b)$).

Cramersche Regel

Lässt sich theoretisch bei quadratischer Koeffizientenmatrix anwenden, wenn $det(A) \neq 0$ ist. Ab n=3 ist die Regel unpraktikabel.

$$x = \frac{1}{\det(A)} \cdot \begin{pmatrix} A_{11}b_1 + A_{21}b_2 + \dots + A_{n1}b_n \\ A_{12}b_1 + A_{22}b_2 + \dots + A_{n2}b_n \\ \dots \\ A_{1n}b_1 + A_{2n}b_2 + \dots + A_{nn}b_n \end{pmatrix}$$

Jede einzelne Komponente dieses Lösungsvektors – abgesehen vom Vorfaktor – kann man als eine Determinante einer Matrix interpretieren, die sich von A nur dadurch unterscheidet, dass man die jeweilige Spalte der Matrix gegen die rechte Seite **b** austauscht.

Gauß-Jordan-Verfahren

Ziel ist eine **kanonische Gestalt** (r = Rg(A)):

$$x_{1}^{*} + a_{1,r+1}^{*} x_{r+1}^{*} + \dots + a_{1n}^{*} x_{n}^{*} = b_{1}^{*}$$

$$x_{2}^{*} + a_{2,r+1}^{*} x_{r+1}^{*} + \dots + a_{2n}^{*} x_{n}^{*} = b_{2}^{*}$$

$$\dots$$

$$x_{r}^{*} + a_{r,r+1}^{*} x_{r+1}^{*} + \dots + a_{rn}^{*} x_{n}^{*} = b_{r}^{*}$$

Ist die Gestalt nicht erreichbar (Widerspruch), ist das System unlösbar.

LINEARE GLEICHUNGSSYSTEME II

Übergang von einer kanonischen Gestalt zu einer anderen (Austauschverfahren) am Beispiel eines Systems von 3 Gleichungen mit 6 Unbekannten

1. Das **Pivotelement** a_{26} geht über in seinen reziproken Wert:

$$a_{26} \to \frac{1}{a_{26}}$$

2. Die restlichen Elemente der **Pivotzeile** (2. Zeile) werden durch das Pivotelement dividiert:

$$a_{24} \to \frac{a_{24}}{a_{26}}, \qquad a_{25} \to \frac{a_{25}}{a_{26}}, \qquad b_2 \to \frac{b_2}{a_{26}}$$

3. Die restlichen Elemente der **Pivotspalte** werden durch das Pivotelement dividiert und mit (-1) multipliziert:

$$a_{16} \rightarrow -\frac{a_{16}}{a_{26}}, \qquad a_{36} \rightarrow -\frac{a_{36}}{a_{26}}$$

4. Alle anderen Elemente werden nach der "Rechteckregel" umgerechnet:

$$\begin{aligned} a_{14} &\to a_{14} - \frac{a_{16} \cdot a_{24}}{a_{26}} \,, & a_{15} &\to a_{15} - \frac{a_{16} \cdot a_{25}}{a_{26}} \\ a_{34} &\to a_{34} - \frac{a_{36} \cdot a_{24}}{a_{26}} \,, & a_{35} &\to a_{35} - \frac{a_{36} \cdot a_{25}}{a_{26}} \\ b_{1} &\to b_{1} - \frac{a_{16} \cdot b_{2}}{a_{26}} \,, & b_{3} &\to b_{3} - \frac{a_{36} \cdot b_{2}}{a_{26}} \end{aligned}$$

EIGENWERTPROBLEME FÜR QUADRATISCHE MATRIZEN

Bestimmungsgleichung für die Eigenwerte (Charakteristische Gleichung der Matrix A):

$$\det(\mathbf{A} - \lambda \mathbf{E}) = 0$$

Indem man nun einen Eigenwert in das homogene Gleichungssystem

$$(A - \lambda E) \cdot x = 0$$

einsetzt, berechnet man die zugehörigen **Eigenvektoren** $x \ne 0$ durch Lösen des Gleichungssystems.

Zu jedem Eigenwert gibt es unendlich viele Eigenvektoren.

Normierter Eigenvektor: Eigenvektor x mit |x| = 1.

Beispiel:

$$A = \begin{pmatrix} -2 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & -2 & -1 \end{pmatrix}$$
 hat die Eigenwerte $\lambda_1 = -2$, $\lambda_2 = 1$, $\lambda_3 = -1$, denn

$$\det(\mathbf{A} - \lambda \mathbf{E}) = \begin{vmatrix} -2 - \lambda & 1 & 1 \\ 0 & 1 - \lambda & 0 \\ 0 & -2 & -1 - \lambda \end{vmatrix} = (-2 - \lambda) \cdot (1 - \lambda) \cdot (-1 - \lambda)$$

Berechnung der Eigenvektoren:

a) zu
$$\lambda_1 = -2$$
:
$$x_2 + x_3 = 0$$

$$3x_2 = 0$$
 hat die Lösungen $x^{(1)} = t \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, t \in \mathbb{R}$
$$-2x_2 + x_3 = 0$$

b) zu
$$\lambda_2 = 1$$
:
$$-3x_1 + x_2 + x_3 = 0$$

$$0 = 0 \text{ hat die Lösungen } x^{(2)} = t \cdot \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}, \ t \in \mathbb{R}$$

$$-2x_2 - 2x_3 = 0$$

c) zu
$$\lambda_3 = -1$$
:

$$\begin{array}{cccc}
 & -x_1 & +x_2 & +x_3 & = 0 \\
 & 2x_2 & = 0 & \text{hat die Lösungen } x^{(3)} = t \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, t \in R \\
 & -2x_2 & = 0
\end{array}$$

FUNKTIONEN MEHRERER VARIABLEN (DIFFERENZIEREN) I

Kettenregel

1. Fall:
$$z = f(x,y)$$
 mit $x = x(t)$ und $y = y(t)$

$$\frac{\mathrm{d}z}{\mathrm{d}t} = \frac{\partial z}{\partial x} \cdot \frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\partial z}{\partial y} \cdot \frac{\mathrm{d}y}{\mathrm{d}t}$$

2. Fall:
$$z = f(x, y)$$
 mit $x = x(u, v)$ und $y = y(u, v)$

$$\frac{\partial z}{\partial u} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial u} \qquad \qquad \frac{\partial z}{\partial v} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial v} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial v}$$

Gleichung der Tangentialebene im Punkt $P_0(x_0, y_0, z_0)$

$$z - z_0 = z_x (x - x_0) + z_y (y - y_0).$$

Dabei sind die partiellen Ableitungen stets an der Stelle P₀ zu nehmen.

Totales Differential

$$dz = z_x \cdot dx + z_y \cdot dy$$
.

Richtungsableitungen

$$\frac{\partial z}{\partial \alpha} = \frac{1}{\sqrt{a_1^2 + a_2^2}} \cdot (a_1 \cdot z_x + a_2 \cdot z_y) = \frac{1}{|\vec{a}|} \cdot (a_1 \cdot z_x + a_2 \cdot z_y)$$

bzw.

$$\frac{\partial z}{\partial \alpha} = z_x \cdot \cos \alpha + z_y \cdot \sin \alpha = (\vec{e}_a, \operatorname{grad}(z)).$$

mit

grad
$$z(x, y) = \begin{pmatrix} z_x \\ z_y \end{pmatrix}$$
 (Gradient von z)

FUNKTIONEN MEHRERER VARIABLEN (DIFFERENZIEREN) II

Relative Extremwerte

Notwendige Bedingung:

grad
$$(z) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 bzw.
$$z_x(x, y) = 0$$
$$z_y(x, y) = 0$$

Hinreichende Bedingung:

Ist für eine **stationäre Stelle**
$$(x_0, y_0)$$
 die **Diskriminante** $D(x_0, y_0) > 0$, wobei
$$D = \begin{vmatrix} z_{xx}(x_0, y_0) & z_{xy}(x_0, y_0) \\ z_{yx}(x_0, y_0) & z_{yy}(x_0, y_0) \end{vmatrix} = z_{xx}(x_0, y_0) \cdot z_{yy}(x_0, y_0) - z_{xy}^2(x_0, y_0)$$

ist, so handelt es sich um ein relatives Extremum.

Für $z_{xx}(x_0, y_0) < 0$ liegt dann ein **relatives Maximum** und

für $z_{xx}(x_0, y_0) > 0$ ein **relatives Minimum** vor.

Bemerkungen:

- 1.) Anstelle von z_{xx} kann in den letzten beiden Zeilen auch z_{yy} genommen werden.
- 2.) Ist $D(x_0, y_0) < 0$, so liegt ein **Sattelpunkt** vor.
- 3.) Ist $D(x_0, y_0) = 0$, so ist keine Aussage möglich. Es müssten Untersuchungen mit höheren Ableitungen angestellt werden.
- 4.) Für Funktionen mit drei und mehr Variablen bleiben die notwendigen Bedingungen (partielle Ableitungen gleich Null) erhalten. Die hinreichenden Bedingungen gestalten sich noch etwas komplizierter.

METHODE DER KLEINSTEN FEHLERQUADRATSUMMEN (APPROXIMATION IM MITTEL)

Approximation durch eine lineare Funktion:

$$f(x; a, b) = ax + b$$

$$a = \frac{n \cdot \sum x_{i} y_{i} - \sum x_{i} \sum y_{i}}{n \cdot \sum x_{i}^{2} - (\sum x_{i})^{2}} \qquad b = \frac{\sum y_{i} \sum x_{i}^{2} - \sum x_{i} \sum x_{i} y_{i}}{n \cdot \sum x_{i}^{2} - (\sum x_{i})^{2}}$$

In allen Summen ist über i von 1 bis n zu summieren.

NEWTON-VERFAHREN FÜR GLEICHUNGSSYSTEME

$$f(x, y) = 0$$
$$g(x, y) = 0$$

Iteration:

$$\begin{pmatrix} x_{k+1} \\ y_{k+1} \end{pmatrix} = \begin{pmatrix} x_k \\ y_k \end{pmatrix} - \begin{pmatrix} f_x(x_k, y_k) & f_y(x_k, y_k) \\ g_x(x_k, y_k) & g_y(x_k, y_k) \end{pmatrix}^{-1} \cdot \begin{pmatrix} f(x_k, y_k) \\ g(x_k, y_k) \end{pmatrix} , k=0,1,2,...$$

oder

$$\begin{pmatrix} f_{x}(x_{k}, y_{k}) & f_{y}(x_{k}, y_{k}) \\ g_{x}(x_{k}, y_{k}) & g_{y}(x_{k}, y_{k}) \end{pmatrix} \cdot \begin{pmatrix} \Delta x_{k} \\ \Delta y_{k} \end{pmatrix} = -\begin{pmatrix} f(x_{k}, y_{k}) \\ g(x_{k}, y_{k}) \end{pmatrix}, k=0,1,2,...$$

mit

$$\begin{split} \Delta x_k &= x_{k+1} - x_k \quad , \quad \Delta y_k = y_{k+1} - y_k \\ & \begin{pmatrix} x_{k+1} \\ y_{k+1} \end{pmatrix} = \begin{pmatrix} x_k \\ y_k \end{pmatrix} + \begin{pmatrix} \Delta x_k \\ \Delta y_k \end{pmatrix}. \end{split}$$

BEISPIEL

Wir suchen eine reelle Lösung des Gleichungssystems $\sin x + y = -0.6$ $x + \cos y = 1.6$

Als Startvektor wählen wir $x_0 = 1.6$, $y_0 = -1.6$ und erhalten (alle Rechnungen werden mit 4 Stellen nach dem Komma durchgeführt):

$$J(x,y) = \begin{pmatrix} \cos x & 1 \\ 1 & -\sin y \end{pmatrix},$$

$$J_0 = J(x_0, y_0) = \begin{pmatrix} -0.0292 & 1 \\ 1 & 0.9996 \end{pmatrix}, \qquad J_0^{-1} = \begin{pmatrix} -0.9713 & 0.9716 \\ 0.9716 & 0.0284 \end{pmatrix}$$

$$\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = \begin{pmatrix} 1.6 \\ -1.6 \end{pmatrix} - \begin{pmatrix} -0.9713 & 0.9716 \\ 0.9716 & 0.0284 \end{pmatrix} \cdot \begin{pmatrix} -0.0004 \\ -0.0292 \end{pmatrix} = \begin{pmatrix} 1.6280 \\ -1.5988 \end{pmatrix}$$

Wir rechnen mit derselben Jacobi-Matrix weiter:

$$\begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = \begin{pmatrix} 1.6280 \\ -1.5988 \end{pmatrix} - \begin{pmatrix} -0.9713 & 0.9716 \\ 0.9716 & 0.0284 \end{pmatrix} \cdot \begin{pmatrix} -0.0004 \\ -0.0000 \end{pmatrix} = \begin{pmatrix} 1.6276 \\ -1.5984 \end{pmatrix}$$

$$\begin{pmatrix} x_3 \\ y_3 \end{pmatrix} = \begin{pmatrix} 1.6276 \\ -1.5984 \end{pmatrix} - \begin{pmatrix} -0.9713 & 0.9716 \\ 0.9716 & 0.0284 \end{pmatrix} \cdot \begin{pmatrix} 0.0000 \\ 0.0000 \end{pmatrix} = \begin{pmatrix} 1.6276 \\ -1.5984 \end{pmatrix}$$

FUNKTIONEN MEHRERER VARIABLEN (INTEGRIEREN) I

Berechnung von Flächenintegralen für Normalbereiche

$$\iint\limits_{(B_x)} f(x,y) dA = \int\limits_{x=a}^b \left(\int\limits_{y=0}^{g(x)} f(x,y) dy \right) dx \qquad \iint\limits_{(B_y)} f(x,y) dA = \int\limits_{y=c}^d \left(\int\limits_{x=0}^{h(y)} f(x,y) dx \right) dy$$

Anwendungen von Flächenintegralen

1. Fläche eines ebenen Bereiches B:

$$A = \iint_{(B)} dx dy$$

2. **Volumen eines Zylinders** mit der Grundfläche B in der (x,y)-Ebene, der Deckfläche f(x,y) und zur z-Achse parallelen Mantellinien:

$$V = \iint_{(B)} f(x, y) dx dy$$

3. Gesamtmasse eines mit Masse belegten ebenen Bereiches B:

(Flächenbezogene Massendichte sei $\mathbf{r}(x, y)$.)

$$m = \iint\limits_{(B)} \mathbf{r}(x, y) dx dy$$

4. Statische Momente eines ebenen Bereiches bezüglich der x- und y-Achse:

$$M_x = \iint_{(B)} y \cdot \mathbf{r}(x, y) dx dy$$
, $M_y = \iint_{(B)} x \cdot \mathbf{r}(x, y) dx dy$

5. Schwerpunktskoordinaten eines ebenen Bereiches B:

$$x_s = \frac{M_y}{m} , y_s = \frac{M_x}{m}$$

6. Trägheitsmomente eines ebenen Bereiches bezüglich der x- und y-Achse:

$$I_x = \iint_{(B)} y^2 \cdot \mathbf{r}(x, y) dx dy$$
 , $I_y = \iint_{(B)} x^2 \cdot \mathbf{r}(x, y) dx dy$

7. Polares Trägheitsmoment:

$$I_0 = \iint_{(B)} (x^2 + y^2) \cdot \mathbf{r}(x, y) dx dy$$

FUNKTIONEN MEHRERER VARIABLEN (INTEGRIEREN) II

Anwendungen von Volumenintegralen

- 1. Volumen eines Körpers K: $V = \iiint_{(K)} dxdydz$
- **2. Masse eines Körpers K** (mit der Massendichte $\rho(x,y,z)$):

$$m=\mathop{\iiint}\limits_{(K)}\rho\big(x,y,z\big)\!dxdydz$$

3. Statische Momente eines Körpers K bezüglich der

(x,y)-Ebene:
$$M_{xy} = \iiint_{(K)} z \cdot \rho(x,y,z) dxdydz$$

(x,z)-Ebene:
$$M_{xz} = \iiint_{(K)} y \cdot \rho(x, y, z) dxdydz$$

(y,z)-Ebene:
$$M_{yz} = \iiint_{(K)} x \cdot \rho(x, y, z) dxdydz$$

4. Schwerpunktkoordinaten eines Körpers K:

$$x_s = \frac{M_{yz}}{m}$$
 , $y_s = \frac{M_{xz}}{m}$, $z_s = \frac{M_{xy}}{m}$

- 5. Trägheitsmomente eines Körpers K:
 - a) planares Trägheitsmoment (bzgl. der Ebene E) $I_E = \iiint\limits_{(K)} [r(x,y,z)]^2 \cdot \rho(x,y) dx dy dz$
 - b) axiales Trägheitsmoment (bzgl. der Geraden g) $I_g = \iiint\limits_{(K)} [r(x,y,z)]^2 \cdot \rho(x,y) dx dy dz$
 - c) polares Trägheitsmoment (bzgl. des Punktes P) $I_P = \iiint\limits_{(K)} [r(x,y,z)]^2 \cdot \rho(x,y) dx dy dz$

Dabei ist jeweils r(x,y,z) der Abstand zur Ebene, zur Geraden bzw. zum Punkt.

FUNKTIONEN MEHRERER VARIABLEN (INTEGRIEREN) III

Angepasste Koordinaten

Im ebenen Fall erhält man anstelle von dxdy bei der Koordinatentransformation

$$x = x(u, v)$$
 , $y = y(u, v)$

das neue Flächenelement

$$dA = \begin{vmatrix} x_u & x_v \\ y_u & y_v \end{vmatrix} | \cdot dudv,$$

und im räumlichen Fall ergibt sich bei der Transformation

$$x = x(u, v, w),$$
 $y = y(u, v, w),$ $z = z(u, v, w)$

$$dV = \begin{vmatrix} x_u & x_v & x_w \\ y_u & y_v & y_w \\ z_u & z_v & z_w \end{vmatrix} | \cdot dudvdw.$$

1. Ebene Polarkoordinaten

$$x = r \cdot \cos(\varphi)$$
 $y = r \cdot \sin(\varphi)$ \Rightarrow $dA = r \cdot drd\varphi$

2. Zylinderkoordinaten

$$x = r \cdot \cos(\varphi)$$
 $y = r \cdot \sin(\varphi)$ $z = z$ \Rightarrow $dV = r \cdot dr d\varphi dz$

3. Kugelkoordinaten

$$x = r \cdot \cos(\varphi) \cdot \sin(\vartheta) \qquad y = r \cdot \sin(\varphi) \cdot \sin(\upsilon) \qquad z = r \cdot \cos(\vartheta)$$

$$\Rightarrow \qquad dV = r^2 \cdot \sin(\vartheta) \cdot dr d\varphi d\vartheta$$