

Engineer-to-Engineer Note EE-290

Technical notes on using Analog Devices DSPs, processors and development tools
Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or
e-mail processor.support@analog.com or processor.tools.support@analog.com for technical support.

Managing the Core PLL on SHARC® Processors
Contributed by Jeyanthi Jegadeesan Rev 4 – November 18, 2010

Copyright 2006-2010, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of
customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of
their respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however no
responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Engineer-to-Engineer Notes.

Introduction
This EE-Note describes how to program the core phase-locked loop (PLL) on ADSP-2126x, ADSP-
2136x, ADSP-2137x, ADSP-2146x, ADSP-2147x and ADSP-2148x SHARC® processors. This document
also provides example code for programming the PLL and discusses possible problems that can occur due
to incorrect programming. Lastly, it provides debug techniques for correct PLL handling.

C callable library functions for programming the PLL on all processors are also provided with this EE-
Note. This library function can be added to the C run-time library and called from VisualDSP++® project
files.

Programming the PLL on SHARC Processors
ADSP-2126x, ADSP-2136x, ADSP-2137x, ADSP-2146x, ADSP-2147x and ADSP-2148x SHARC
processors use a PLL to provide clocks that switch at higher frequencies than the clock source (CLKIN).
The PLL derives the clock for the processor's peripherals in addition to the processor's core and internal
memory.

The processor's CLK_CFG1-0 pins select the core clock (CCLK) to CLKIN ratio during power-up in hardware.
For the ADSP-2147x and ADSP-2148x processors, ratios of 32:1, 16:1, and 8:1 can be selected using the
CLK_CFG pins during reset. For the ADSP-2136x, ADSP-2137x, and ADSP-2146x processors, ratios of
32:1, 16:1, and 6:1 can be selected using the CLK_CFG pins during reset. For the ADSP-2126x processors,
ratios of 16:1, 8:1, and 3:1 can be selected using the CLK_CFG pins during reset.

The power management control register (PMCTL) allows you to program the PLL dynamically in software.
The PMCTL can be used to select CCLK-to-CLKIN ratios that are not supported by hardware pins. It can also
provide power savings in applications that have time periods during which the full instruction rate is not
needed. The CCLK rate can be decreased during periods of less-intensive processing.

The PLL block diagram in Figure 1 shows an input divider, multiplier, and a divider for deriving the CCLK.
Figure 1 shows the PLL block diagram for the ADSP-21367, ADSP-21368, ADSP-21369 (hereafter
referred to as ADSP-21368 processors) and ADSP-2137x processors. The PLL block diagram for the
ADSP-21362, ADSP-21363, ADSP-21364, ADSP-21365, ADSP-21366 (hereafter referred to as ADSP-
21362 processors), and ADSP-2126x processors is functionally the same with the following differences:

http://www.analog.com/processors�

Managing the Core PLL on SHARC® Processors (EE-290) Page 2 of 14

 The SDRAM clock (SDCLK) shown in Figure 1 does not apply to ADSP-2126x and ADSP-21362
processors.

 The peripheral clock (PCLK) for the ADSP-2126x processors is the same as the CCLK. For all ADSP-
2136x, ADSP-2137x, and ADSP-214xx processors the PCLK is half the CCLK.

 The CCLK of ADSP-2126x processors can be a maximum of 200 MHz, and the CCLK of ADSP-21362
processors can be a maximum of 333 MHz. The CCLK of ADSP-21368 processors can be a maximum
of 400 MHz. The CCLK of ADSP-2137x processors can be a maximum of 266 MHz. The CCLK of
ADSP-2146x processors can be a maximum of 450 MHz, while the CCLK of ADSP-2147x and ADSP-
2148x processors can be a maximum of 266 MHz and 400 MHz, respectively.

 For ADSP-2126x processors, the ratios selected by the CLK_CFG pins are different and the divider
values selected by the software is 2, 4, 8 or 16.

The following bits in the PMCTL register are used for programming the PLL:

 PLLMx – These bits select the multiplier value (0 to 64).

 PLLDx – These bits select the divider value (1, 2, 4, or 8 for ADSP-2136x and ADSP-2137x
processors, 2, 4, 8 or 16 for ADSP-2126x processors).

 INDIV – This bit selects the input divider, which divides the input clock by 2.

 SDCKR – These bits select the CCLK-to-SDCLK ratio (2.0:1, 2.5:1, 3.0:1, 3.5:1, or 4.0:1). These bits apply
only to ADSP-21368 and ADSP-2137x processors. These bits are reserved for the ADSP-2126x and
ADSP-21362 processors.

 DIVEN – This bit enables the divisor.

Figure 1. PLL block diagram for ADSP-21368 and ADSP-2137x processors

The Figure 2 shows the PLL block diagram for the ADSP-2146x processors. This block diagram includes
the clock dividers for the DDR2 and link port clocks, both of which are only available on the ADSP-2146x
processors.

Managing the Core PLL on SHARC® Processors (EE-290) Page 3 of 14

The following bits in the PMCTL register are used for programming the PLL:

 PLLMx – These bits select the multiplier value (0 to 64).

 PLLDx – These bits select the divider value (2, 4, 8 or 16 for ADSP-2146x processors).

 INDIV – This bit selects the input divider, which divides the input clock by 2.

 DDR2CKR – These bits select the CCLK-to-DDR2CLK ratio (2:1, 3:1, or 4:1). These bits apply only to
ADSP-2146x processors.

 LCLKR – These bits select the CCLK-to-LCLK ratio (2.0:1, 2.5:1, 3.0:1, or 4.0:1). These bits apply only
to ADSP-2146x processors.

 DIVEN – This bit enables the divisor.

Figure 2. PLL block diagram for ADSP-2146x processors

The Figure 3 shows the PLL block diagram for the ADSP-2147x and ADSP-2148x processors. The
following bits in the PMCTL register are used for programming the PLL:

 PLLMx – These bits select the multiplier value (0 to 64).

 PLLDx – These bits select the divider value (2, 4, 8 or 16).

 INDIV – This bit selects the input divider, which divides the input clock by 2.

 SDCKR – These bits select the CCLK-to-SDCLK ratio (2:1, 2.5:1, 3:1, 3.5:1 or 4:1).

 DIVEN – This bit enables the divisor.

Managing the Core PLL on SHARC® Processors (EE-290) Page 4 of 14

Figure 3. PLL block diagram for ADSP-2147x and ADSP-2148x processors

Steps for Programming the PLL

The input divider, multiplier, and/or divider are used to select the CCLK ratio.

 When using only the multiplier to program the PLL, after setting the multiplier values, the application
should place the PLL in bypass mode and wait for the PLL to lock in the new rate. In bypass mode, the
processor core runs at the CLKIN frequency. The PLL requires 4096 CCLK cycles (in this case, the
CLKIN cycles) to lock at the programmed frequency. Once the PLL is locked, it should be taken out of
bypass mode.

 When using only the divider to program the PLL, the divisor value can be set using the PLLDx bits, and
the divisor can be enabled using the DIVEN bit in the same instruction. Wait a minimum of 16 CCLK
cycles for the new divider values to take effect.

Use either of the following two approaches to program the PLL using both the multiplier and divider:

Approach #1
1. Set the PLL multiplier and divisor value and enable the divider by setting (=1) the DIVEN bit.

2. After one CCLK cycle, place the PLL in bypass mode by setting (=1) the bypass (PLLBP) bit. Ensure that
the DIVEN bit is cleared before writing to the PMCTL register.

3. Wait a minimum of 4096 CCLK cycles in bypass mode until the PLL locks.

4. Take the PLL out of bypass mode by clearing (=0) the bypass bit (PLLBP). Ensure that the DIVEN bit is
cleared before writing to the PMCTL register.

5. Wait a minimum of 16 CCLK cycles for the new divider values to take effect.

Managing the Core PLL on SHARC® Processors (EE-290) Page 5 of 14

Approach #2
1. Set the PLL multiplier and divisor values and place the PLL in bypass mode by setting (=1) the bypass

(PLLBP) bit.

2. Wait a minimum of 4096 CCLK cycles in bypass mode until the PLL locks.

3. Take the PLL out of bypass mode by clearing (=0) the bypass (PLLBP) bit.

4. Wait for one CCLK cycle.

5. Enable the divider by setting (=1) the DIVEN bit.

6. Wait a minimum of 16 CCLK cycles for the new divider values to take effect.

Considerations
Be aware of the following considerations while programming the PMCTL register:

 When the PLL is programmed using a multiplier and a divider, do not enable the DIVEN and PLLBP bits
during the same CCLK cycle. There should be a delay of at least one CCLK cycle between programming
these bits.

 In the user application, select the PLL multiplier value according to the following conditions:

 The product of CLKIN and PLLM must never exceed half of the maximum VCO (fVCO) frequency if the
Input divider is not enabled (INDIV = 0).

 The product of CLKIN and PLLM must never exceed the maximum VCO (fVCO) frequency if the input
divider is enabled (INDIV = 1).

This limitation is due that the VCO frequency programmed must never exceed the maximum VCO (fVCO)
frequency for a specific processor. Please refer the datasheet of the specific processor for the minimum
and maximum VCO frequency values. The VCO frequency is calculated as follows:

fVCO = 2 * PLLM * fINPUT

Equation 1. VCO frequency calculation

The core clock is calculated as follows for the ADSP-2126x, ADSP-2136x, and ADSP-2137x
processors.

fCCLK = (2 * PLLM * fINPUT) / (2 * PLLN)

Equation 2. CCLK frequency calculation for ADSP-2126x, ADSP-2136x, and ADSP-2137x processors

The core clock is calculated as follows for the ADSP-214xx processors.

fCCLK = (2 * PLLM * fINPUT) / (PLLN)

Equation 3. CCLK frequency calculation for ADSP-214xx processors

Managing the Core PLL on SHARC® Processors (EE-290) Page 6 of 14

where:
fVCO = VCO frequency

fCCLK = CCLK frequency

PLLM = Multiplier value programmed

PLLN = Divider value programmed

fINPUT = Input frequency to the PLL

fINPUT = CLKIN when the input divider is disabled, or CLKIN/2 when the input divider is enabled

 Clear the DIVEN bit during the write to the PMCTL register while placing the PLL in bypass mode (by
setting the PLLBP bit to 1) or bringing it out of bypass mode (by clearing the PLLBP bit).

 Set the DIVEN bit while setting any of the core clock to peripheral clock ratio. For example, the CCLK-
to-SDCLK ratio, CCLK-to-DDR2CLK ratio, or CCLK-to-LCLK ratio bits in the PMCTL register. After changing
the ratios wait for at least 16 CCLK cycles for the new divider values to take effect.

Example Code
The assembly listings in this section demonstrate various ways of programming the PLL using the
multiplier, divider, or both. Listing 1 shows an example of PLL programming using the divider.

InitPLL:

//Set and enable PLL Divider for 8
 ustat1 = dm(PMCTL);
 bit set ustat1 PLLD8|DIVEN;
 dm(PMCTL) = ustat1;

//Wait for 16 CCLK cycles at least for the new divider values to take effect
 lcntr = 16, do wait_loop until lce;
 wait_loop: nop;
 rts;

Listing 1. PLL programming using divider only

Listing 2 shows an example of programming the PLL using only the multiplier.

InitPLL:
//Set the multiplier value for 8 and
//place the PLL in bypass mode
 ustat1 = dm(PMCTL);
 bit set ustat1 PLLM8|PLLBP;
 dm(PMCTL) = ustat1;

//Wait for 4096 cycles min for the PLL
//to lock at the programmed rate
 r0 = 5000;
 lcntr = r0, do delay until lce;
 delay: nop;

Managing the Core PLL on SHARC® Processors (EE-290) Page 7 of 14

//Take the PLL out of bypass mode
 ustat1 = dm(PMCTL);
 bit clr ustat1 PLLBP;
 dm(PMCTL) = ustat1;

 rts;

Listing 2. PLL programming using multiplier only

Listing 3 and Listing 4 show examples of programming the PLL using both the multiplier and divider.

InitPLL:

//Set the multiplier value for 8, //divider value of 2 and enable the
//divider
 ustat1 = dm(PMCTL);
 bit set ustat1 PLLD2|DIVEN| PLLM8;
 dm(PMCTL) = ustat1;

//Place the PLL in bypass mode and // disable the divider
 bit set ustat1 PLLBP;
 bit clr ustat1 DIVEN;
 dm(PMCTL) = ustat1;

//Wait for 4096 cycles min for the PLL
//to lock at the programmed rate
 r0 = 5000;
 lcntr = r0, do delay until lce;
 delay: nop;

//Take the PLL out of bypass mode
// Reading the PMCTL register value will return the DIVEN bit value as zero
 ustat1 = dm(PMCTL);
 bit clr ustat1 PLLBP;
 dm(PMCTL) = ustat1;

//Wait for 16 CCLK cycles at least for the new divider values to take effect
 lcntr = 16, do wait_loop until lce;
 wait_loop: nop;
 rts;

Listing 3. PLL programming using multiplier and divider (approach #1)

InitPLL:

//Set the multiplier value for 8, divider value of 2 and
//place the PLL in bypass mode
 ustat1 = dm(PMCTL);
 bit set ustat1 PLLM8|PLLBP|PLLD2;
 dm(PMCTL) = ustat1;

//Wait for 4096 cycles min for the PLL to lock at the programmed rate
 r0 = 5000;
 lcntr = r0, do delay until lce;

Managing the Core PLL on SHARC® Processors (EE-290) Page 8 of 14

 delay: nop;

//Take the PLL out of bypass mode
 ustat1 = dm(PMCTL);
 bit clr ustat1 PLLBP;
 dm(PMCTL) = ustat1;

//Enable the divider
 bit set ustat1 DIVEN;
 dm(PMCTL) = ustat1;
//Wait for 16 CCLK cycles at least for the new divider values to take effect
 lcntr = 16, do wait_loop until lce;
 wait_loop: nop;
 rts;

Listing 4. PLL programming using multiplier and divider (approach #2)

Listing 5 shows an example of incorrect programming of the PLL:

InitPLL:
//Set the multiplier value for 8, divider value of 2 and enable the divider
 ustat1 = dm(PMCTL);
 bit set ustat1 PLLD2|DIVEN| PLLM8;
 dm(PMCTL) = ustat1;

//Place the PLL in bypass mode and the divider is not disabled - this
//can cause the problem
 bit set ustat1 PLLBP;
 dm(PMCTL) = ustat1;

//Wait for 4096 cycles min for the PLL to lock at the programmed rate

 r0 = 5000;
 lcntr = r0, do delay until lce;
 delay: nop;

//Take the PLL out of bypass mode
 ustat1 = dm(PMCTL);
 bit clr ustat1 PLLBP;
 dm(PMCTL) = ustat1;
//Wait for 16 CCLK cycles at least for the new divider values to take effect
 lcntr = 16, do wait_loop until lce;
 wait_loop: nop;
 rts;

Listing 5. Incorrect PLL programming example

Managing the Core PLL on SHARC® Processors (EE-290) Page 9 of 14

Effects of Incorrect PLL Programming
The PLL is used to derive the core clock and the clock for the peripherals. If the PLL is not programmed
correctly, the PLL does not lock to the desired frequency. This can cause the core (as well as the
peripherals) to behave unpredictably.

Debug Help for PLL Handling
The PLL is the heart of the SHARC processors and requires robust hardware and software handling.
Whenever the user is faced with problems based on PLL changes the following can be checked out in the
system:

 Is the power-up specification met according to the data sheet (valid core and IO voltage, input clock,
reset signal)?

 Are the CLK_CFG pins static settings (may change only during reset)?

 Did the core wait at least 5000 CLKIN cycles in a loop after entering bypass?

 If required to change multiplier settings, was PLL entered in bypass mode?

 Is the RESETOUT pin asserted (indicating that the 4096 cycles are elapsed)?

 Did the core wait at least 15 CCLK cycles in a loop after changing any of the divider value?

initPLL Library Function
The initPLL_2126x,initPLL_21362,initPLL_21368,initPLL_2137x, initPLL_2146x,
initPLL_2147x, and initPLL_2148x functions are the assembly library functions implemented for
programming the PLL on third and fourth generation SHARC processors. These functions can be added to
the VisualDSP++ C run-time library. After adding to the C run-time library, these functions can be called
from any project file.

How to Use

The initPLL_2126x, initPLL_21362, initPLL_21368, initPLL_2137x, initPLL_2147x and
initPLL_2148x functions accept the following four parameters:

 PLL multiplier value – (0 to 64)

 PLL divisor value – (0, 1, 2, or 3). For ADSP-2136x and ADSP-2137x processors these values
correspond to the divider values of 1, 2, 4 or 8 respectively. For ADSP-2126x, ADSP-2147x, and
ADSP-2148x processors these values correspond to the divider values of 2, 4, 8 or 16 respectively.

 SDCLK ratio – CCLK-to-SDCLK ratio (0, 1, 2, 3, or 4). The SDCLK ratio is not used on ADSP-2126x and
ADSP-21362 processors. For ADSP-2136x, ADSP-2137x, ADSP-2147x, and ADSP-2148x processors
these values correspond to the SDCLK ratio values of 2, 2.5, 3, 3.5 or 4 respectively.

 Input divider – Binary value. When true, enables the input divider.

Managing the Core PLL on SHARC® Processors (EE-290) Page 10 of 14

The initPLL_2146x function accepts the following five parameters:

 PLL multiplier value – (0 to 64)

 PLL divisor value – (0, 1, 2, or 3). These values correspond to the divider values of 2, 4, 8 or 16
respectively.

 DDR2CLK ratio – CCLK-to-DDR2CLK ratio (0, 2, or 4). These values correspond to the DDR2CLK ratio
values of 2, 3, or 4 respectively.

 Input divider – Binary value. When true, enables the input divider.

 LCLK ratio - CCLK-to-LCLK ratio (0, 1, 2, or 3). These values correspond to the LCLK ratio values of 2,
2.5, 3, or 4 respectively.

When a negative value is passed as the parameter for any of the above values, the corresponding
parameter is not set.

The prototypes of the library functions for initializing the PLL are defined as follows:

void initPLL_2126x(int multi, int div, int sdckr, boolean indiv);
void initPLL_21362(int multi, int div, int sdckr, boolean indiv);
void initPLL_21368(int multi, int div, int sdckr, boolean indiv);
void initPLL_2137x(int multi, int div, int sdckr, boolean indiv);
void initPLL_2146x(int multi, int div, int ddckr, boolean indiv, int lckr);
void initPLL_2146x _anomaly_1500020_Workaround (int multi, int div, int ddckr,
boolean indiv, int lckr);
void initPLL_2147x(int multi, int div, int sdckr, boolean indiv);
void initPLL_2147x_anomaly_1500020_Workaround (int multi, int div, int sdckr,
boolean indiv);
void initPLL_2148x(int multi, int div, int sdckr, boolean indiv);
void initPLL_2148x_anomaly_1500020_Workaround (int multi, int div, int sdckr,
boolean indiv);

This function can be called from a C function as follows:

#include <initPLL.h>
initPLL_21368(8,4,3,false);

Adding initPLL to the C Run-Time Library
The VisualDSP++ archiver (elfar) combines object files with the existing library functions. The object file
generated for the initPLL_2126x, initPLL_21362, initPLL_21368, initPLL_2137x,
initPLL_2146x, initPLL_2147x and initPLL_2148x functions can be added to the existing C run-time
library using the elfar utility. The elfar utility can be called from the command prompt. This utility is
available under:
C:\Program Files\Analog Devices\ VisualDSP x.x

Managing the Core PLL on SHARC® Processors (EE-290) Page 11 of 14

The following section describes how to add the initPLL_2146x function to the ADSP-2146x C run-time
library (see Figure 4) The same sequences also apply to ADSP-2126x, ADSP-21362, ADSP-21368,
ADSP-2137x, ADSP-2147x and ADSP-2148x processors. The associated ZIP file contains initPLL
functions for each processor.

For ADSP-2146x, ADSP-2147x and ADSP-2148x processors, the C run-time library files (libc.dlb,
libc_nwc.dlb) are available under:
C:\Program Files\Analog Devices\VisualDSP 5.0\214xx\lib

C:\Program Files\Analog Devices\VisualDSP 5.0\214xx\lib\21469_rev_any

C:\Program Files\Analog Devices\VisualDSP 5.0\214xx\ lib\ 21479_rev_0.0

C:\Program Files\Analog Devices\VisualDSP 5.0\214xx\lib\21479_rev_any

To create the initPLL_2146x.doj file for the ADSP-2146x C run-time library:

 Copy the initPLL_2146x.asm file for ADSP-2146x processors to the following folder:
C:\Program Files\Analog Devices\VisualDSP 5.0\214xx\lib\src\libc_src

 Copy the initPLL.h file for ADSP-2146x processors to the following folder:
C:\Program Files\Analog Devices\VisualDSP 5.0\214xx\include

 In a command prompt window, change the path to the following folder:
C:\Program Files\Analog Devices\VisualDSP 5.0\214xx\lib\src\libc_src

 Run the following command to create the initPLL_2146x.doj file under the library folder:
C:\Program Files\Analog Devices\VisualDSP 5.0\214xx\lib

“C:\Program Files\Analog Devices\VisualDSP 5.0\easm21k.exe” –proc ADSP-21469 –o
“C:\Program Files\Analog Devices\VisualDSP 5.0\214xx\lib\initPLL_2146x.doj”
initPLL_2146x.asm

To add the initPLL_2146x.doj file to the ADSP-2146x C run-time library:

 In a command prompt window, change the path to the following folder (from which the
initPLL_2146x.doj file and the library files are available):

C:\Program Files\Analog Devices\ VisualDSP 5.0\214xx\lib

 Run the following command to add the initPLL_2146x.doj function to the library for the first time:
“C:\Program Files\Analog Devices\VisualDSP 5.0\elfar.exe” –a libc.dlb
initPLL_2146x.doj

“C:\Program Files\Analog Devices\ VisualDSP 5.0\elfar.exe” –a libc_nwc.dlb
initPLL_2146x.doj

 You may run the following command to update the initPLL_2146x.doj function to the library:
“C:\Program Files\Analog Devices\VisualDSP 5.0\elfar.exe” –r libc.dlb
initPLL_2146x.doj

“C:\Program Files\Analog Devices\ VisualDSP 5.0\elfar.exe” –r libc_nwc.dlb
initPLL_2146x.doj

This command will replace the existing .obj file with the updated one.

Managing the Core PLL on SHARC® Processors (EE-290) Page 12 of 14

Figure 4. Commands for adding the initPLL_2146x to the C runtime library

The initPLL library functions should also be added to all the C run time library files for a specific
processor.

For ADSP-2126x processors, the C Runtime library libc26x.dlb file is available under the following
paths:
C:\Program Files\Analog Devices\VisualDSP 5.0\212xx\lib

C:\Program Files\Analog Devices\VisualDSP 5.0\212xx\lib\2126x_any

C:\Program Files\Analog Devices\VisualDSP 5.0\ 212xx\ lib\ 2126x_rev_0.0

For ADSP-2136x and ADSP-2137x processors, the C Runtime library libc36x.dlb and libc37x.dlb
files are available under the following paths:
C:\Program Files\Analog Devices\VisualDSP 5.0\213xx\lib

C:\Program Files\Analog Devices\VisualDSP 5.0\213xx\lib\2136x_any

C:\Program Files\Analog Devices\VisualDSP 5.0\ 213xx\ lib\ 2136x_rev_0.0

The C Runtime library file libc36x.dlb is also available under the following path:
C:\Program Files\Analog Devices\VisualDSP 5.0\ 213xx\ lib\ 2136x_LX3_rev_0.1

C:\Program Files\Analog Devices\VisualDSP 5.0\ 213xx\ lib\ 21369_rev_any

Managing the Core PLL on SHARC® Processors (EE-290) Page 13 of 14

Alternately, the Batch files available with the source code can also be used for adding the initPLL library
function to the corresponding runtime library. Unzip the initPLL assembly and header files, batch files into
the local machine. Use the below steps to add the initPLL_2146x library function to the 214xx runtime
library files. The batch file takes the path of the folder where the initPLL header and assembly files are
copied as the first parameter and it takes the path where the VDSP++ tool is installed as the next
parameter.

 Unzip the example code available to the below path:
D:\EE290V04

 In command prompt change the path to the below one:
cd D:\EE290V04\ Batch_Files

 Run the below command:
2146x.bat D:\EE290V04\214xx C:\Program Files\Analog Devices\VisualDSP 5.0

Summary
This EE-Note demonstrates how to program the PLL on SHARC processors. It describes the initPLL
library functions and also provides the procedure for integrating them with the existing VisualDSP++
C run-time library.

The initPLL function source code and object files for the ADSP-2126x, ADSP-2136x, ADSP-2137x,
ADSP-2146x, ADSP-2147x, and ADSP-2148x processors are provided in the associated ZIP file.

References
[1] ADSP-2126x SHARC Processor Peripherals Manual. Rev 3.0, December 2005. Analog Devices, Inc.

[2] ADSP-2136x SHARC Processor Hardware Reference for the ADSP-21362/3/4/5/6 Processors. Rev 2.0, June 2009.
Analog Devices, Inc.

[3] ADSP-21368 SHARC Processor Hardware Reference. Rev 1.0, September 2006. Analog Devices, Inc.

[4] ADSP-214xx SHARC Processor Hardware Reference. Rev 0.3, July 2010. Analog Devices, Inc

[5] VisualDSP++ 5.0 Linker and Utilities Manual. Rev 3.3, September 2009. Analog Devices, Inc.

[6] ADSP-21261/ADSP-21262/ADSP-21266 SHARC Embedded Processors datasheet. Rev F, August 2009.
Analog Devices, Inc.

[7] ADSP-21362/ADSP-21363/ADSP-21364/ADSP-21365/ADSP-21366 SHARC Processors datasheet. Rev F,
April 2010. Analog Devices, Inc.

[8] ADSP-21367/ADSP-21368/ADSP-21369 SHARC Processors datasheet. Rev E, July 2009. Analog Devices, Inc.

[9] ADSP-21371/ADSP-21375 SHARC Processors datasheet. Rev C, September 2009. Analog Devices, Inc.

[10] ADSP-21469 SHARC Processor datasheet. Rev 0, June 2010. Analog Devices, Inc.

[11] ADSP-21478/ADSP-21479 SHARC Processor datasheet. Rev PrB, April 2010. Analog Devices, Inc.

[12] ADSP-21483/ADSP-21486/ADSP-21487/ ADSP-21488/ADSP-21489 SHARC Processor datasheet. Rev PrA, April 2010.
Analog Devices, Inc.

Managing the Core PLL on SHARC® Processors (EE-290) Page 14 of 14

Document History

Revision Description

Rev 4 – November 18, 2010
by Jeyanthi Jegadeesan

Added information on the ADSP-2147x and ADSP-2148x processors.
Furthermore, tested the code under VisualDSP++ 5.0 Update 8.

Rev 3 – December 24, 2009
by Jeyanthi Jegadeesan

Changed the document title from “Managing the Core PLL on Third-Generation
SHARC Processors” to “Managing the Core PLL on SHARC Processors” to
include information on the ADSP-2146x processors. Furthermore, tested the code
under VisualDSP++ 5.0 Update 7.

Rev 2 – May 16, 2007
by Jeyanthi Jegadeesan

Generalized the EE-Note for ADSP-2126x, ADSP-2136x and ADSP-2137x
processors, and updated document title accordingly.

Rev 1 – June 23, 2006
by Jeyanthi Jegadeesan

Initial revision.

	Introduction
	Programming the PLL on SHARC Processors
	Steps for Programming the PLL
	Approach #1
	Approach #2

	Considerations
	Example Code
	Effects of Incorrect PLL Programming
	Debug Help for PLL Handling
	initPLL Library Function
	How to Use

	Adding initPLL to the C Run-Time Library
	Summary
	References
	Document History

