Lösungen zur Aufgabensammlung

1. Grundbegriffe, Mathematische Grundlagen

1.1. Struktur, Wirkungsplan, technologisches Schema

1.1.1. Ableiten der mathematischen Gleichungen aus dem Wirkungsplan

A1.
$$x_{a} = x_{e} [K_{1}x_{e} - K_{4}(K_{2}x_{e} + K_{3}x_{e})]$$
$$x_{a} = x_{e}^{2}(K_{1} - K_{2}K_{4} - K_{3}K_{4})$$

A2.
$$x_{a1} = \frac{K_1 K_2 x_e}{1 + K_2 K_3 K_5 K_7 + K_2 K_3 K_6 K_7}$$
$$x_{a2} = x_{a1} \cdot K_3 K_4 = \frac{K_1 K_2 K_3 K_4 x_e}{1 + K_2 K_3 K_5 K_7 + K_2 K_3 K_6 K_7}$$
$$x_{a3} = x_{a1} \cdot K_3 K_6 = \frac{K_1 K_2 K_3 K_6 x_e}{1 + K_2 K_3 K_5 K_7 + K_2 K_3 K_6 K_7}$$

A3.
$$x_a = K_6 \cdot z \left[K_1 x_{e1} + \frac{K_2 x_{e1} + K_3 (x_{e1} + x_{e2})}{K_4 x_{e2} - K_5 (x_{e2} + z)} \right]$$

A4.
$$x_a = \frac{K_2 K_3 + x_e (K_1 - K_2)}{K_2 + K_3}$$

A5.
$$G(p) = \frac{v(p)}{u(p)} = \frac{G_1(p)G_2(p)G_3(p)}{1 + G_2(p)G_3(p)G_4(p) + G_1(p)G_2(p)G_5(p)}$$

$$\frac{v}{u_1} = \frac{G_3 G_A}{1 + G_3 G_A G_B}; \quad \frac{v}{u_2} = \frac{G_3}{1 + G_3 G_A G_B}$$
$$G_A = \frac{G_1 G_2}{1 + G_2 G_6}; \quad G_B = G_5 - \frac{G_4}{G_1 G_2}$$

1.1.2. Darstellung des Wirkungsplanes nach den Gleichungen

A1.

A2.

A3.

1.1.3. Modellgleichungen und technologisches Schema

A1. Behälter mit freiem Auslauf

A2. Feder-Masse-Dämpfungssystem

Umstellen nach der höchsten Ableitung und Division durch m:

$$\begin{split} \ddot{s}(t) &= \frac{1}{m}F + g - \frac{d}{m}\dot{s}(t) - \frac{c}{m}s(t) \,, \\ \text{für} \quad \frac{1}{m}F + g &= K_s\cdot x_e(t) \text{ und} \qquad s(t) = x_a(t) \text{ folgt} \end{split}$$

$$\ddot{\mathbf{x}}_{a}(t) = \mathbf{K}_{s} \cdot \mathbf{x}_{e}(t) - \frac{\mathbf{d}}{\mathbf{m}} \dot{\mathbf{x}}_{a}(t) - \frac{\mathbf{c}}{\mathbf{m}} \mathbf{x}_{a}(t) \,.$$

A3. Reibungsfreies Pendel

Umstellen nach der höchsten Ableitung:

$$\ddot{\phi}(t) = -\omega^2 \cdot \sin \phi(t) = 0$$

$$x_e(t) = 0$$

$$\phi(t) \qquad \phi(t) \qquad$$

A4. Elektrische Schaltung

Umstellen nach der höchsten Ableitung und Division durch T_0^2 :

$$\ddot{\mathbf{u}}_{a}(t) = \frac{1}{T_{0}^{2}} \left[T_{D} \cdot \dot{\mathbf{u}}_{e}(t) - 2dT_{0} \cdot \dot{\mathbf{u}}_{a}(t) + u_{a}(t) \right]$$

$$\overset{\mathbf{u}_{e}(t)}{\longrightarrow} \boxed{T_{D}} \underbrace{\frac{1}{T_{0}^{2}}}_{2dT_{0}} \underbrace{\frac{\mathbf{u}_{a}(t)}{\mathbf{u}_{a}(t)}}_{2dT_{0}} \underbrace{\int}_{\mathbf{u}_{a}(t)} \underbrace{\mathbf{u}_{a}(t)}_{\mathbf{u}_{a}(t)} \underbrace{\mathbf{u}_{a}(t)} \underbrace{\mathbf{u}_{$$

1.2. Regelungtechnische Aufgabe, Analyse technischer Systeme

1.2.1. Regelung technischer Anordnungen

A1. Wasseraufbereitungsanlage (Druckregelung).

Regelgröße: Meßgröße und Meßort: Stellgröße und Stellort: Führungsgröße: Störgrößen:	Druck p, Druck p vor dem Schüttschichtfilter, Durchsatz im Stellventil der Rohrleitung, Drucksollwert, schwankende Entnahme, schwankender Vordruck, Leckstellen, Eiterverschmutzung/Eitenverschleiß
	Filterverschmutzung/Filterverschleiß.

A2. Wärmetauscher (Temperaturregelung)

Regelgröße: Meßgröße und Meßort: Stellgröße und Stellort: Führungsgröße: Störgrößen:	Temperatur, Temperatur im Wärmetauscher, Dampfdurchsatz im Stellventil der Leitung, Temperatursollwert, Heizdampfdruck- bzw. Temperaturschwankung, schwankende Entnahme/Zufluß, Korrosion, Verschleiß, schwankende Umgebungstemperatur.	
	Regler Ventil WTauscher	θ(t)

A3. Gleichstromantrieb (Drehzahlregelung)

Regelgröße:

Störgrößen:

Drehzahl n(t), Meßgröße und Meßort: Drehzahl an der Welle (Spannung UT am Tachogenerator), Stellgröße und Stellort: Ankerspannung im Erregerkreis U_a (Thyristorsteller), Führungsgröße: Drehzahlsollwert (U_{soll}), Laständerungen, Netzschwankungen, Verschleiß (Reibmomente).

Meßglied

1.2.2. Regelungstechnische Analyse technischer Anordnungen

 A1. Regelstrecke:
 (Motor), Antriebsrolle, Band, Anzeigestift x, Schleifer vom Potentiometer,

 Meßglied:
 Potentiometer,

 Regler:
 Verstärker, (Motor),

 Regelgröße:
 Regelgröße ist die Anzeige x in cm,

 Sollwert:
 Als Sollwert für die Anzeige wirkt die Eingangsspannung U_e.

A2. Stabilisierung der Ofentemperatur.

Regelgröße:Ofentemperatur,Führungsgröße:Einstellung des Schaltpunktes am Kontaktthermometer,Stellgröße:Relaiskontakte zum Ein-/Ausschalten der Heizung,Störgrößen:Öffnen des Ofens zum Beschicken, Änderungen der Außentemperatur,
Menge und Temperatur des Füllmaterials.

A3. Regelgröße: Temperatur 9, Rückführaröße: Spannung U_{9} , Stellgröße: Einstellung Stelltrafo, Störgrößen: Beschicken, Änderung der Außentemperatur, Regelstrecke: Stelltrafo, Heizung, Ofen, Meßglied: Thermometer mit Wandler, Regler: Verstärker, Motorverstärker und Motor, Stellalied Stelltrafo.

A4. Regelungstechnische Aufgabe:

Spannungsstabilisierung UL bei schwankender Last und schwankender Eingangsspannung.

1.3. Linearisierung, Arbeitspunkt

A1.
$$u = -450 + 22,5\Psi + 18\Omega$$

Wirkungsplan:

1.4. Übertragungsverhalten von Systemen

1.4.1. Differentialgleichung

A1.
$$\frac{R_1R_2}{R_1 + R_2} \cdot C \cdot \dot{u}_a(t) + u_a(t) = \frac{R_1R_2}{R_1 + R_2} \cdot C \cdot \dot{u}_e(t) + \frac{R_2}{R_1 + R_2} \cdot u_e(t)$$

A2.
$$(\mathbf{R}_1 + \mathbf{R}_2) \cdot \mathbf{C} \cdot \dot{\mathbf{u}}_a(t) + \mathbf{u}_a(t) = \mathbf{R}_2 \cdot \mathbf{C} \cdot \dot{\mathbf{u}}_e(t)$$

A3.
$$\mathbf{L} \cdot \mathbf{C} \cdot \ddot{\mathbf{u}}_{a}(t) + \mathbf{R} \cdot \mathbf{C} \cdot \dot{\mathbf{u}}_{a}(t) + \mathbf{u}_{a}(t) = \mathbf{u}_{e}(t)$$

A4.
$$R_{1}R_{2}C_{1}C_{2} \cdot \ddot{u}_{a}(t) + (R_{1}C_{1} + R_{1}C_{2} + R_{2}C_{2}) \cdot \dot{u}_{a}(t) + u_{a}(t) = R_{2}C_{2} \cdot \dot{u}_{e}(t),$$

bzw. mit $T_{1} = R_{1}C_{1}; T_{2} = R_{2}C_{2}; T_{12} = R_{1}C_{2};$
 $T_{1} \cdot T_{2} \cdot \ddot{u}_{a}(t) + (T_{1} + T_{12} + T_{2}) \cdot \dot{u}_{a}(t) + u_{a}(t) = T_{2} \cdot \dot{u}_{e}(t)$

1.4.2. Sprungantwort, Übergangsfunktion

Ergebnisvergleich: Durch die Näherungslösung (Differenzenbildung) ist die aus der Anstiegsantwort berechnete Übergangsfunktion im Zeitbereich 0 < t < 30 s ungenauer (Vergleich der Zeitkonstanten).

A5. $h(t) = K \cdot (1 - 1, 25 \cdot e^{-t} + 0, 25 \cdot e^{-5t})$

1.4.3. Laplace-Transformation, Übertragungsfunktion

A1.

$$\begin{split} G(p) &= \frac{K_S}{1 + pT_1} & \text{P-T}_1 \\ G(p) &= K_P \cdot \left(1 + \frac{1}{pT_n}\right) & \text{PI} \end{split}$$

$$G(p) = K_{P} \cdot (1 + pT_{v})$$
PD

$$G(p) = \frac{K_{I}}{p(1+pT_{1})}$$

$$G(p) = \frac{K_D \cdot p}{1 + pT_1} \qquad D-T_1$$

$$G(p) = \frac{K_{S} \cdot e^{-pT_{t}}}{(1+pT_{1})} \qquad P-T_{1}-T_{t}$$

P-T₂-Schwingungsverhalten (d<1)

P-T₂-Schwingungsverhalten (d<1)

I-T₁

 $D-T_3$

$$G(p) = \frac{10}{1 + p \cdot 1.6s + p^2 \cdot 6.25s^2}$$

$$G(p) = \frac{1}{1+2p+3p^2}$$

$$G(p) = \frac{0,25}{p(1+0,5p)}$$

$$G(p) = \frac{2p}{1 + 2p + 4p^2 + 3p^3}$$

$$G(p) = \frac{2.5 \cdot e^{-p \cdot 4s}}{1 + p \cdot 1.5s}$$
 P-T₁-T_t

A2.

$$\ddot{x}_{a}(t) + \ddot{x}_{a}(t) + 16,25 \cdot \dot{x}_{a}(t) = 8 \cdot x_{e}(t)$$
 I-T

oder

$$\begin{split} \ddot{x}_{a}(t) + \ddot{x}_{a}(t) + 16,25 \cdot \dot{x}_{a}(t) &= 8 \cdot x_{e}(t) & \text{I-T}_{2} \\ \ddot{x}_{a}(t) + \dot{x}_{a}(t) + 16,25 \cdot x_{a}(t) &= 8 \cdot \int x_{e}(t) dt \\ \ddot{x}_{a}(t) + 3 \cdot \ddot{x}_{a}(t) + 4 \cdot \dot{x}_{a}(t) + 2 \cdot x_{a}(t) &= 6 \cdot \left(x_{e}(t) + 3 \cdot \int x_{e}(t) dt\right) & \text{PI-T}_{3} \\ 5 \cdot \dot{x}_{a}(t) + x_{a}(t) &= 2 \cdot \int x_{e}(t) dt & \text{I-T}_{1} \\ 4 \cdot \ddot{x}_{a}(t) + 5 \cdot \dot{x}_{a}(t) + x_{a}(t) &= 8 \cdot x_{e}(t) & \text{P-T}_{2} \\ 3 \cdot \ddot{x}_{a}(t) + 2 \cdot \ddot{x}_{a}(t) + 4 \cdot \dot{x}_{a}(t) + 2 \cdot x_{a}(t) &= 4 \cdot x_{e}(t) & \text{P-T}_{3} \\ 2 \cdot \ddot{x}_{a}(t) + 3 \cdot \dot{x}_{a}(t) + 2 \cdot x_{a}(t) &= 3 \cdot \dot{x}_{e}(t) & \text{D-T}_{2} \\ 3 \cdot \dot{x}_{a}(t) + x_{a}(t) &= 5 \cdot x_{e}(t-2) & \text{P-T}_{1}\text{-T}_{t} \end{split}$$

A3.
$$G(p) = \frac{x(p)}{y(p)} = \frac{1+p}{1+\frac{17}{16}p}$$
 PD-T₁.

A4.
$$G(p) = \frac{x_a(p)}{x_e(p)} = \frac{0.25}{1+2p}$$
 P-T₁.

A5.
$$G(p) = \frac{G_1(p)}{1 + G_1(p)G_2(p)} \cdot \frac{G_3(p)}{1 + G_3(p)G_4(p)} = \frac{1}{\frac{1}{G_1(p)} + G_2(p)} \cdot \frac{1}{\frac{1}{G_3(p)} + G_4(p)}$$

$$\begin{split} &G_1(p) = \frac{K_{11}}{p}; \quad G_2(p) = K_2; \quad G_3(p) = \frac{K_{13}}{p}; \quad G_4(p) = K_4, \\ &G(p) = \frac{1}{K_2 K_4} \cdot \frac{1}{\left(1 + \frac{p}{K_{11} K_2}\right) \left(1 + \frac{p}{K_{13} K_4}\right)}; \quad G(p) = \frac{K}{(1 + pT_1)(1 + pT_2)}, \qquad \mathsf{P-T_2}. \end{split}$$

,

,

$$G(p) = \frac{u_{a}(p)}{u_{e}(p)} = \frac{R_{2}}{R_{1} + R_{2}} \cdot \frac{1 + R_{1}C \cdot p}{1 + \frac{R_{1}R_{2}}{R_{1} + R_{2}}C \cdot p} = \frac{K_{P}(1 + pT_{D})}{1 + pT_{1}}$$

$$G(p) = \frac{u_{a}(p)}{u_{e}(p)} = \frac{R_{2}C \cdot p}{1 + (R_{1} + R_{2})C \cdot p} = \frac{K_{D} \cdot p}{1 + pT_{1}},$$

$$G(p) = \frac{u_{a}(p)}{u_{e}(p)} = \frac{1}{1 + RC \cdot p + LC \cdot p^{2}} = \frac{K}{1 + 2dT_{0} \cdot p + T_{0}^{2} \cdot p^{2}}.$$

A7.
$$G(p) = -\frac{R_2}{R_1} \cdot (1 + R_1 C \cdot p) = -K_P (1 + T_D p)$$
 PD.

A6.

A8. Partialbruchzerlegung ergibt:

$$G(p) = \frac{2}{p} \left(\frac{1}{p} - \frac{4}{3(1+p)} + \frac{1}{12(1+0,25p)} \right),$$

$$g(t) = -2,5 + 2t + 2,67e^{-t} - 0,167e^{-4t},$$

$$h(t) = 2,65 - 2,5t + t^2 - 2,67e^{-t} + 0,042e^{-4t}.$$

1.4.4. Diskretes Übertragungsverhalten

A1.
$$y_{R}(k) = K_{P} \left[x_{w}(k) + \frac{T_{v}}{T_{A}} \cdot \left(x_{w}(k) - x_{w}(k-1) \right) \right].$$

A2. DGL:
$$0,5\ddot{x}(t) + 1,5\dot{x}(t) + x(t) = 2y(t)$$
,
 $x(k)\left[\frac{1}{4 \cdot T_A^2} + \frac{3}{4 \cdot T_A} + \frac{1}{2}\right] - x(k-1)\left[\frac{1}{2 \cdot T_A^2} + \frac{3}{4 \cdot T_A}\right] + x(k-2) \cdot \frac{1}{4 \cdot T_A^2} = y(k)$.

A3. Polstellen: $z_1 = 0$; $z_{2,3,4} = 0,5$ (Dreifachpol), System ist stabil, weil die Pole im Einheitskreis |z| < 1 liegen.

A4.

$$x(0) = 1; x(1) = -1; x(k) = 0$$
 für $k \ge 2$.

A5.
$$X_{z}(z) = \sum_{k=0}^{\infty} \frac{x(k)}{z^{k}} = 1 + \frac{2}{z} + \frac{3}{z^{2}}.$$

1.4.5. Frequenzganganalyse

<mark>ω</mark> in min⁻¹	0,01	0,025	0,04	0,1	0,25	0,4	1,0	1,6	2,5	4,0	6,3	10	15	25
Re{G(jω)}	11,5	5,3	3,9	2,6	2,0	1,86	1,49	1,14	0,72	0,375	0,17	0,072	0,03	0,012
lm{G(jω)}	-8,6	-6,1	-4,45	-2,35	-1,3	-1,05	-1,02	-1,08	-1,01	-0,81	-0,58	-0,38	-0,25	-0,16
G(jω)	14,4	8,1	5,9	3,5	2,4	2,1	1,8	1,6	1,2	0,9	0,6	0,4	0,3	0,2
 G(jω) in dB	23,1	18,1	15,4	10,9	7,6	6,6	5,1	3,9	1,9	-1,0	-4,4	-8,3	-12,0	-15,9
φ(ω)	-36,8	-49,0	-48,8	-42,1	-33,0	-29,4	-34,4	-43,5	-54,5	-65,2	-73,7	-79,3	-83,2	-85,7

A1. Berechnung Betrag und Phase für das Bodediagramm

 r_2 voltation mit $r_1 = r_2 0$, $r_1 = r_2 0$ mit

A3. G(j	ω) =	$\frac{1+j}{1+j}$	$\frac{\omega \cdot 2n}{\omega \cdot 8n}$	$\frac{ns}{ns}$;	ω _{e1} =	$=\frac{1}{T_1} = 125 \mathrm{s}^{-1} \; ; \omega_{e2} = \frac{1}{T_D} = 500 \mathrm{s}^{-1} \; ; \omega_3 = \sqrt{\frac{1}{T_1 T_D}} = 250 \mathrm{s}^{-1}$	-1
ω in s⁻¹	0	125	250	500	$\rightarrow \infty$		
Re{G}	1	0,63	0,4	0,29	0,25		_
lm{G}	0	-0,38	-0,3	-0,18	0		_
G(jω)	1	0,73	0,5	0,34	0,25		7
G(jω) dB	0	-2,75	-6,0	-9,3	-12		
φ Grad	0	-31	-37	-31	0	-60 +	_

A4. System	1:								
ω in min ⁻¹	0,0	0,1	0,2	0,5	1,0	2,0	5,0	10	$\omega \rightarrow \infty$
Re{G(jω)}	5,0	5,0	5,0	5,0	5,0	5,0	5,0	5,0	5,0
Im{G(jω)}	0,0	0,5	1,0	2,5	5,0	10,0	25,0	50,0	$\rightarrow \infty$
G(jω)	5,0	5,0	5,1	5,6	7,1	11,2	25,5	50,2	$\rightarrow \infty$
 G(jω) in dB	14,0	14,0	14,1	14,9	17,0	21,0	28,1	34,0	$\rightarrow \infty$
φ Grad	0,0	5,7	11,3	26,6	45,0	63,4	78,7	84,3	90

 $G(j\omega) = K_{P}(1 + j\omega T_{D})$ $G(j\omega) = 5(1 + j\omega \cdot 1\min)$

System 2:										
ω in min ⁻¹	0,0	0,1	0,5	1,0	1,5	2,0	2,5	3,0	10,0	$\omega \rightarrow \infty$
Re{G(jω)}	0,0	0,01	0,2	0,5	0,69	0,8	0,86	0,9	0,99	1,0
Im{G(jω)}	0,0	0,1	0,4	0,5	0,46	0,4	0,34	0,3	0,099	0,0
G(jω)	0,0	0,1	0,4	0,7	0,8	0,9	0,9	0,9	1,0	1,0
 G(jω) in dB	$\rightarrow -\infty$	-20,0	-7,0	-3,0	-1,6	-1,0	-0,7	-0,5	0,0	0,0
φ Grad	90	84,3	63,4	45,0	33,7	26,6	21,6	18,4	5,7	0,0

$G(i\omega) =$	K _D jω	$- \frac{1\min j\omega}{2}$
U(jw) –	$1 + j\omega T_1$	$1 + j\omega \cdot 1 \min$

A5. Die Messung eines linearen technischen Systems ergab den folgenden Amplitudengang:

ω in s ⁻¹	10	20	40	70	100	200	400	700	1000	2000	4000	7000	10000
G(jω)	0,016	0,031	0,064	0,11	0,16	0,31	0,54	0,75	0,85	0,95	0,99	1,0	1,0
 G(jω) in dB	-35,9	-30,2	-23,9	-19,2	-15,9	-10,2	-5,4	-2,5	-1,4	-0,4	-0,1	0,0	0,0

$$G(j\omega) = \frac{K_D j\omega}{1 + j\omega T_1};$$

$$K_D = T_1 = \frac{1}{600}s$$

$$G(j\omega) = \frac{1.6 \text{ ms} \cdot j\omega}{1 + j\omega \cdot 1.6 \text{ ms}}$$

$$G(p) = \frac{1 + pT_{D}}{(1 + pT_{1})(1 + pT_{2})} = (1 + pT_{D}) \cdot \frac{1}{1 + pT_{1}} \cdot \frac{1}{1 + pT_{2}},$$

mit $\omega_{e1} = \frac{1}{T_{1}} = 0.4; \quad \omega_{e2} = \frac{1}{T_{D}} = 2; \quad \omega_{e3} = \frac{1}{T_{2}} = 40.$

$$\begin{array}{c}
20 \\
|G| \\
dB \\
0 \\
-20 \\
0,1 \\
1 \\
1 \\
10 \\
10^{2} \\
\underline{\omega}
\end{array}$$

1.4.6. Übertragungsverhalten von Systemen, Komplexaufgaben

A1. a)

$$G(p) = \frac{u_{a}}{u_{e}} = \frac{1}{1 + p \cdot (C_{1}R_{1} + C_{2}R_{1} + C_{2}R_{2}) + p^{2} \cdot C_{1}R_{1} \cdot C_{2}R_{2}},$$

$$G(j\omega) = \frac{1}{(1 + j\omega T_{1})(1 + j\omega T_{2})},$$

$$G(j\omega) = \frac{1}{1 + 0,774 \cdot j\omega + 0,10296 \cdot (j\omega)^{2}} = \frac{1}{(1 + 0,6j\omega)(1 + 0,17j\omega)},$$
PN-Verteilung:

$$p_{P1} = -1,7; p_{P2} = -5,9$$

Frequenzgangdarstellung:

 $\omega_{e1} = 1,7$; $\omega_{e2} = 5,9$.

Amplitudengang:

b)
$$G(j\omega) = \frac{R_2 + \frac{1}{j\omega C_2}}{R_2 + \frac{1}{j\omega C_2} + \frac{R_1}{1 + j\omega R_1 C_1}}; G(p) = \frac{(1 + pC_1R_1)(1 + pC_2R_2)}{(1 + pC_1R_1)(1 + pC_2R_2) + pC_2R_1}$$
$$G(j\omega) = \frac{(1 + j\omega T_{D1})(1 + j\omega T_{D2})}{(1 + j\omega T_1)(1 + j\omega T_2)},$$
$$G(j\omega) = \frac{(1 + 0.39j\omega)(1 + 0.26j\omega)}{(1 + 0.39j\omega)(1 + 0.26j\omega) + 0.86j\omega} = \frac{(1 + 0.39j\omega)(1 + 0.26j\omega)}{(1 + 1.44j\omega)(1 + 0.07j\omega)},$$

PN-Verteilung:

$$p_{N1} = -2,56; p_{N2} = -3,85,$$

 $p_{P1} = -0,69; p_{P2} = -14,28.$

Frequenzgangdarstellung:

 $\omega_{e1} = 0,7 -; \quad \omega_{e2} = 2,6 +; \quad \omega_{e3} = 3,85 +; \quad \omega_{e4} = 14,3 -$

Amplitudengang:

Phasengang:

A3.

a)

b)

Übertragungsfunktion:

A5.

$$\begin{split} \Omega &= 2\pi \cdot n = \frac{c \cdot G_{e}(j\omega)G_{m}(j\omega)}{1 + c^{2} \cdot G_{e}(j\omega)G_{m}(j\omega)} \cdot U_{M} - \frac{G_{m}(j\omega)}{1 + c^{2} \cdot G_{e}(j\omega)G_{m}(j\omega)} \cdot M_{L}, \\ \Omega &= 2\pi \cdot n = \frac{c}{\frac{1}{\frac{1}{G_{e}(j\omega)G_{m}(j\omega)} + c^{2}}} \cdot U_{M} - \frac{\frac{1}{\frac{1}{G_{e}(j\omega)}}}{\frac{1}{\frac{1}{G_{e}(j\omega)G_{m}(j\omega)} + c^{2}}} \cdot M_{L}. \end{split}$$
Leerlauf (M_L = 0):

$$\begin{split} \Omega &= 2\pi \cdot n = \frac{c}{\frac{1}{G_{e}(j\omega)G_{m}(j\omega)} + c^{2}} \cdot U_{M}; \\ \Omega &= \frac{c}{(R_{A} + R_{M})(1 + j\omega T_{e}) \cdot f_{r}(1 + j\omega T_{m}) + c^{2}} \cdot U_{M}, \\ \Omega &= \frac{332 (Vs)^{-1}}{1 + 9.8 \cdot 10^{-3} j\omega + 37.5 \cdot 10^{-9} (j\omega)^{2}} \cdot U_{M} = \frac{332 (Vs)^{-1}}{(1 + 9.9 \cdot 10^{-3} j\omega)(1 + 3.8 \cdot 10^{-6} j\omega)} \cdot U_{M}; \\ \Omega &= 830 s^{-1}; \quad n = 132 Us^{-1}. \end{split}$$

Lastabhängigkeit der Drehzahl:

$$n = -\frac{\frac{1}{2\pi}}{\frac{1}{G_{m}(j\omega)} + c^{2} \cdot G_{e}(j\omega)} \cdot M_{L} = -\frac{\frac{1}{2\pi} \cdot (R_{A} + R_{M})(1 + j\omega T_{e})}{f_{r} \cdot (1 + j\omega T_{m}) \cdot (R_{A} + R_{M})(1 + j\omega T_{e}) + c^{2}} \cdot M_{L}$$
$$n = -\frac{0.51 \cdot 10^{6}(1 + 3.8 \cdot 10^{-6} j\omega) (VAs)^{-1} s^{-1}}{(1 + 9.9 \cdot 10^{-3} j\omega)(1 + 3.8 \cdot 10^{-6} j\omega)} \cdot M_{L}$$

Bei $U_M = 2,5 \text{ V}$ verringert sich die Drehzahl auf

 $n = 132 - 5.1 \cdot 10^5 \cdot 0.1 \cdot 10^{-3} = 81 \text{ U s}^{-1}$

Bei $U_M = 2,5 \text{ V}$ bleibt der Motor bereits bei $M_{L0} = 0,26 \text{ } 10^{-3} \text{ Nm}$ stehen.

Die Vergrößerung des Meßwiderstandes führt auf die Drehzahlabhängigkeit

$$n = \frac{51,6 (Vs)^{-1} \cdot U_{M}}{(1+13\cdot10^{-3} j\omega)(1+3,8\cdot10^{-6} j\omega)} - \frac{0,66\cdot10^{6}(1+3,8\cdot10^{-6} j\omega) (VAs)^{-1}s)^{-1}}{(1+13\cdot10^{-3} j\omega)(1+0,4\cdot10^{-3} j\omega)} \cdot M_{L},$$

die Drehzahl fällt ab, die Lastabhängigkeit wird größer, die Dynamik wird etwas schlechter.

A7. Geradennäherung ergibt:

2. Kennwertermittlung

A2.

2.1. Kennwertermittlung im Zeitbereich

A1. h(t	$=\frac{x_a}{x}$	$\frac{d(t)}{d(t)} =$	$\frac{\vartheta(t)}{1,25}$	- 20°C 5 kW	-; K	s = 80	$\frac{^{\circ}\mathrm{C}}{\mathrm{kW}}$								
t in min	0	10	20	30	40	50	60	80	100	120	140	160	200	240	$\rightarrow \infty$
9 in °C	20	23	27	34	42	48	55	67	77	85	92	97	105	111	120
h(t)	0	2,4	5,6	11,2	17,6	22,4	28	37,6	45,6	52	57,6	61,6	68	72,8	80

$$\begin{aligned} \frac{T_g}{T_u} &= \frac{350 \,\text{s}}{18 \,\text{s}} = 19,5 > 9,65; \quad b = 9,4, \\ \frac{T_g}{T_1} &= 12,3; \quad T_1 = 28,4 \,\text{s}; \quad T_2 = b \cdot T_1 = 267 \,\text{s}, \\ G(p) &= 1,3 \frac{\text{mV}}{\text{V}} \cdot \frac{1}{(1 + p \cdot 28,4 \,\text{s})(1 + p \cdot 267 \,\text{s})}, \\ h(t) &= 1,3 \frac{\text{mV}}{\text{V}} \cdot \left[1 - 1,12 \cdot \exp\left(-\frac{t}{267 \,\text{s}}\right) + 0,12 \cdot \exp\left(-\frac{t}{28,4 \,\text{s}}\right) \right] \\ 7570 \cdot \frac{d^2 9(t)}{dt^2} + 295 \cdot \frac{d9(t)}{dt} + 9(t) = 1,3 \frac{\text{mV}}{\text{V}} \cdot u_e(t). \end{aligned}$$

A3.	1	h(t) =	$\frac{\vartheta(t)}{0,5}$	- 20°C kW	_		$K_{S} = \frac{590^{\circ}C - 20^{\circ}C}{0.5 \text{kW}} = 1140 \frac{^{\circ}C}{\text{kW}},$							
t in min	0	0,2	0,4	0,6	1,0	2,0	3,0	4,0	6,0	8,0	10,0	12,0	14,0	$\rightarrow \infty$
Գ in °C	20	23	29	39	58	117	185	250	365	445	500	525	545	590
h(t)	0	6	18	38	76	194	330	460	690	850	960	1010	1050	1140
h(t) in %	0,0	0,5	1,6	3,3	6,7	17,0	28,9	40,4	60,5	74,6	84,2	88,6	92,1	100,0

$$\begin{split} T_{10} &= 1,4\,;\\ T_{90} &= 12,4\,; \quad T_{90} \ / \ T_{10} &= 8,9\,; \quad b = 3,8\,;\\ T_{70} &= 7,2\,; \quad T_{70} \ / \ T_{10} &= 5,1\,; \quad b = 3,8\,;\\ T_{50} &= 4,9\,; \quad T_{50} \ / \ T_{10} &= 3,5\,; \quad b = 4,2\,;\\ T_{30} &= 3,2\,; \quad T_{30} \ / \ T_{10} &= 2,3\,; \quad b = 4,5\,; \end{split}$$

$$b = 4; \quad T_{1} = 1,25 \text{ min}; \quad T_{2} = 5 \text{ min},$$

$$G(p) = 1140 \frac{^{\circ}\text{C}}{\text{kW}} \cdot \frac{1}{(1 + p \cdot 1,25 \text{ min})(1 + p \cdot 5 \text{ min})},$$

$$h(t) = 1140 \frac{^{\circ}\text{C}}{\text{kW}} \cdot \left[1 + 0,33 \cdot \exp\left(-\frac{t}{1,25 \text{ min}}\right) - 1,33 \cdot \exp\left(-\frac{t}{5 \text{ min}}\right)\right],$$

$$6,25 \cdot \frac{\text{d}^{2} \vartheta(t)}{\text{d}t^{2}} + 6,25 \cdot \frac{\text{d} \vartheta(t)}{\text{d}t} + \vartheta(t) = 1140 \frac{^{\circ}\text{C}}{\text{kW}} \cdot P_{\text{el}}(t).$$

$$\begin{split} K_{S} &= \frac{\Delta x_{a}}{\Delta x_{e}} = \frac{3,2 \text{ mV}}{70 \text{ K}} = 0,046 \frac{\text{mV}}{\text{K}}, \\ T_{30} / T_{50} &= 0,72; \quad n = 3 \\ T_{50} / T_{90} &= 0,51; \quad n = 3 \end{split} \right\} \quad n = 3; \quad \frac{T_{50}}{T_{1}} = 2,6; \quad T_{1} = 3,8 \text{ s}, \\ G(p) &= \frac{K_{S}}{(1 + pT_{1})^{3}} = 0,046 \frac{\text{mV}}{\text{K}} \cdot \frac{1}{(1 + p \cdot 3,8 \text{ s})^{3}}, \\ h(t) &= 0,046 \frac{\text{mV}}{\text{K}} \cdot \left[1 - e^{-\frac{t}{3,8s}} \left(1 + \frac{t}{3,8s} + \frac{t^{2}}{28,9s^{2}} \right) \right]. \end{split}$$

A4.

55

2.2. Kennwertermittlung im Frequenzbereich

$$\begin{array}{ll} \mbox{A1.1.} & K_{I}=0,6; & \omega_{e1}=0,2 \ (+); & \omega_{e2}=4 \ (-) \ , \\ & G(j\omega)=\frac{K_{I}}{j\omega}\cdot\frac{1+j\omega T_{D}}{1+j\omega T_{1}}=\frac{0,6}{j\omega}\cdot\frac{1+j\omega\cdot 5}{1+j\omega\cdot 0,25} \ , \\ & \mbox{bzw.:} & G(j\omega)=K_{P}\!\!\left(1\!+\!\frac{1}{j\omega T_{n}}\right)\!\cdot\frac{1}{1+j\omega T_{1}}=3\cdot\!\left(1\!+\!\frac{1}{j\omega\cdot 1,67}\right)\!\cdot\frac{1}{1+j\omega\cdot 0,25} & \mbox{Pl-T}_{1} \ . \end{array}$$

2.
$$K_{S} = 20 dB = 10; \quad \omega_{e1} = 1 (-); \quad \omega_{e2} = 2 (-) ,$$

 $G(j\omega) = \frac{K_{S}}{(1 + j\omega T_{1})(1 + j\omega T_{2})} = \frac{10}{(1 + j\omega \cdot 1)(1 + j\omega \cdot 0,5)} , \qquad P-T_{2}.$

3.
$$K_{I} = 0,2; \quad \omega_{e1} = 0,1 (+); \quad \omega_{e2} = 0,5 (+); \quad \omega_{e3} = 2 (-); \quad \omega_{e4} = 10 (-),$$

$$G(j\omega) = \frac{K_{I}}{j\omega} \cdot \frac{(1+j\omega T_{D1})(1+j\omega T_{D2})}{(1+j\omega T_{1})(1+j\omega T_{2})} = \frac{0,2}{j\omega} \cdot \frac{(1+j\omega \cdot 10)(1+j\omega \cdot 2)}{(1+j\omega \cdot 0,5)(1+j\omega \cdot 0,1)}, \quad I-(PD)_{2}-T_{2},$$
bzw.:
$$G(j\omega) = \frac{K_{P} \left(1 + \frac{1}{j\omega T_{n}} + j\omega T_{v}\right)}{(1+j\omega T_{1})(1+j\omega T_{2})} = \frac{2,4 \cdot \left(1 + \frac{1}{j\omega \cdot 5} + j\omega \cdot 1,67\right)}{(1+j\omega \cdot 0,5)(1+j\omega \cdot 0,1)}, \quad PID-T_{2}.$$

4.
$$K_{\rm D} = T_{\rm D} = \frac{1}{0.02} = 50 ,$$
$$G(j\omega) = K_{\rm D}j\omega = j\omega T_{\rm D} = j\omega \cdot 50 , \qquad \qquad \mathsf{D} .$$

5.
$$K_{I} = \frac{1}{T_{I}} = 0,04$$
,
 $G(j\omega) = \frac{K_{I}}{j\omega} = \frac{1}{j\omega T_{I}} = \frac{0,04}{j\omega} = \frac{1}{j\omega \cdot 25}$, I.

6.
$$K_{S} = -14 dB = 0,2; \quad \omega_{e1} = 3 (-) ,$$

 $G(j\omega) = \frac{K_{S}}{1 + j\omega T_{1}} = \frac{0,2}{1 + j\omega \cdot 0,33} ,$ P-T₁.

7.
$$K_D = T_D = \frac{1}{0,4}; \quad \omega_{e1} = 0,4 (-) ,$$

 $G(j\omega) = \frac{K_D j\omega}{1 + j\omega T_1} = \frac{j\omega T_D}{1 + j\omega T_1} = \frac{2,5 \cdot j\omega}{1 + j\omega \cdot 2,5} ,$ D-T₁.

$$\begin{split} K_{\rm D} &= T_{\rm D} = \frac{1}{2}; \quad \omega_{e1} = 0,4 \ (-); \quad \omega_{e2} = 5 \ (-) \ , \\ G(j\omega) &= \frac{K_{\rm D} j\omega}{(1+j\omega T_1)(1+j\omega T_2)} = \frac{0,5 \cdot j\omega}{(1+j\omega \cdot 0,5)(1+j\omega \cdot 0,2)} \ , \end{split} \quad \mathsf{D-T}_2 \end{split}$$

.

8.

3. Regeleinrichtungen und Regelalgorithmen

3.1. Zweipunktregler

A1. Grundlast:

$$\Delta x_G = 150 \,^{\circ}\text{C} - 20 \,^{\circ}\text{C} = 130 \,^{\circ}\text{C} ,$$

$$\Delta y_G = \frac{\Delta x_G}{K_S} = \frac{130 \,^{\circ}\text{C}}{12 \,\text{K} \,\text{m}^{-3}\text{h}} = 10.8 \frac{\text{m}^3}{\text{h}} ,$$

Regelbereich für die Regellast:

$$\Delta x_{R} = x_{max} - x_{0} = 100 \,^{\circ}\text{C};$$

geschaltete Regellast:

$$\Delta y_{\rm R} = \frac{\Delta x_{\rm R}}{K_{\rm S}} = \frac{100\,^{\circ}{\rm C}}{12\,{\rm K}\,{\rm m}^{-3}{\rm h}} = 8,35\frac{{\rm m}^3}{{\rm h}} \,,$$

Schwingspanne:

$$2\widehat{\mathbf{x}} = \frac{\mathbf{T}_{t}}{\mathbf{T}_{l}} \cdot \Delta \mathbf{x}_{R} + \mathbf{x}_{\Delta} = 36,6 \,^{\circ}\mathrm{C} ,$$

Extremtemperaturen:

$$x_{s} + \hat{x} = 218,3 \,^{\circ}\text{C}$$

 $x_{s} - \hat{x} = 181,7 \,^{\circ}\text{C}$

Schwingungsdauer:

$$T \approx 4 \cdot T_t + \frac{4x_{\Delta}}{\Delta x_R} \cdot T_1 = 22 \min; \quad T_{lauf} = T_{lab} = T_1 ,$$

Ein/Ausschaltverhältnis:

$$\frac{T_{lauf}}{T_{lab}} = 1 \ ,$$

Bleibende Regeldifferenz:

$$\mathbf{x}_{\mathrm{db}} = \mathbf{0} \; .$$

3.2. Stetige Regeleinrichtungen

$$(p) = \frac{y_R(p)}{x_d(p)} = \frac{1}{\frac{1}{K_1} + G_r(p)}$$
,

für $K_r \rightarrow \infty$:

$$G_{R}(p) = \frac{1}{G_{r}(p)} = \frac{1}{10p} \cdot (1 + 16p + 48p^{2}) = 1,6 \cdot \left(1 + \frac{1}{16p} + 3p\right), \quad \text{PID-Regler},$$

rte: $K_{P} = 1,6; \quad T_{n} = 16; \quad T_{v} = 3.$

DGL:

Kennwerte: $K_P = 1,6$; $T_n = 16$;

A2. Kennlinie:

A3.

$$y_{R}(t) = K_{I} \cdot \int x_{W}(t) dt$$

oder $\dot{y}_{R}(t) = K_{I} \cdot x_{W}(t)$
$$K_{I} = 0.5 \frac{cms^{-1}}{V}$$

$$T_{y} = \frac{y_{h}}{y_{h} \cdot K_{I}} = \frac{y_{h}}{\dot{y}_{R max}} = 6s.$$

$$G_{R}(p) = \frac{y_{R}(p)}{x_{d}(p)} = \frac{1}{\frac{1}{G_{v}(p)} + G_{r}(p)} = \frac{1}{\frac{p}{4 \cdot 0.5} + \frac{2 \cdot 35p}{1 + 35p}},$$

$$G_{R}\left(p\right) = \frac{0,49 \cdot \left(1 + \frac{1}{p \cdot 35s}\right)}{1 + p \cdot 0,25s} , \qquad \text{PI-T}_{1}\text{-Verhalten},$$

 $\label{eq:Kennwerte: K_P = 0,49 ; \ \ T_n = 35 \; s \; ; \ \ T_1 = 0,25 \; s \; .$

A4. PI-Regler,

$$G_{R}(p) = 1,5 \cdot \left(1 + \frac{1}{3p}\right),$$

 $\label{eq:Kennwerte: K_P = 1,5; T_n = 3.}$

4. Entwurf und Verhalten einschleifiger linearer Regelkreise

4.1. Übertragungsverhalten des Regelkreises

A1.

A3. Reglerauswahl:

a)	P-T ₂ -Strecke,	P-Regler	bleibende Regeldifferenzen bei Führung und Störung;
		I-Regler	keine bleibenden Regeldifferenzen, aber langsamer;
		PI-, PID	keine bleibenden Regeldifferenzen, schneller als I-Regler.
b)	I-T ₁ -Strecke,	P-, PD-Regler I-Regler	bleibende Regeldifferenz bei Störung; instabil:
		PI-, PID	keine bleibenden Regeldifferenzen, deutlich geringere Stabilitätsreserve als P-Regler.

A4. Reglerauswahl:

b)	I-T ₁ -Strecke,	P-, PD-Regler	bleibende Regeldifferenz bei Störung;
		I-Regler	instabil;
		PI-, PID	keine bleibenden Regeldifferenzen, deutlich geringere Stabilitätsreserve als P-Regler.
b)	P-T ₂ -Strecke,	P-Regler	bleibende Regeldifferenzen bei Führung und Störung;
		I-Regler	keine bleibenden Regeldifferenzen, aber langsamer;
		PI-, PID	keine bleibenden Regeldifferenzen, schneller als I-Regler.

4.2. Stabilität des Regelkreises

A1.
$$D = \begin{vmatrix} K_{I}K_{P}T_{n} & T_{1}T_{n} \\ K_{I}K_{P} & T_{n} \end{vmatrix},$$
$$D_{1} = K_{I}K_{P}T_{n} > 0; \quad K_{I} > 0, \quad K_{P} > 0, \quad T_{n} > 0,$$
$$D_{2} = K_{P}K_{I}T_{n}^{2} - K_{P}K_{I}T_{n}T_{1} > 0; \quad T_{n} - T_{1} > 0, \quad T_{n} > T_{1}.$$

$$D_{2} = \begin{vmatrix} 3,5 & 1 \\ 1+2K_{P} & 3,5 \end{vmatrix},$$

$$K_{P} < 5,6.$$

$$\begin{split} G_{\rm R}(j\omega) &= -\frac{1}{G_{\rm S}(j\omega)} ,\\ K_{\rm P} &= -\frac{j\omega(j\omega - \omega^2 - j\omega^3)}{2 + j\omega} ,\\ \omega_{\rm krit} &= \sqrt{2} \, ; \quad K_{\rm Pkrit} = 1 ; \quad T_{\rm krit} = 4,44 \, {\rm min} \, . \end{split}$$

A4.
$$\omega = 0,5$$
,

stabil, da
$$Im\left\{-\frac{1}{G_{S}(j\omega)}\right\} > Im\left\{G_{R}(j\omega)\right\}.$$

$$G_{R}(j\omega) \cdot G_{S}(j\omega) = -1$$
,

$$\frac{\mathbf{K}_{\mathrm{I}}}{\omega} \cdot \mathbf{1} = \mathbf{1}; \quad -\frac{\pi}{2} - \omega \mathbf{T}_{\mathrm{t}} = -\pi \qquad \mathbf{K}_{\mathrm{I}} = \frac{\pi}{2} \cdot \frac{1}{\mathbf{T}_{\mathrm{t}}},$$
$$\frac{\mathbf{K}_{\mathrm{I}}}{\omega} \cdot \mathbf{1} = \mathbf{1}; \quad -\frac{\pi}{2} - \omega \mathbf{T}_{\mathrm{t}} = -\frac{2\pi}{3} \qquad \mathbf{K}_{\mathrm{I}} = \frac{\pi}{6} \cdot \frac{1}{\mathbf{T}_{\mathrm{t}}}.$$

A6. Hurwitzkriterium:

$$A(p) = K + a_0 + a_1 p + a_2 p^2 + p^4,$$

instabil, da $a_3 = 0$.

4.3. Einstellregeln

 $T_n = 4$,

A1. Einstellregeln nach Chien/Hrones/Reswick (CHR):

$$K_{P} = 0.6 \cdot \frac{T_{g}}{T_{u}K_{S}} = 0.1 \frac{kW}{K}, \qquad T_{n} = 4 \cdot T_{u} = 12 \min .$$

A2.

I-Regler an $\,G_1(p)=\frac{2,5}{(1\!+\!0,\!2p)(1\!+\!0,\!5p)}$,

Bodediagramm zeichnen: $2{,}5=8~dB~;~\omega_{e1}=5\,s^{-1}~;~\omega_{e2}=2\,s^{-1}$, Stabilitätsgrenze:

 $\text{bei } \phi_s = -90^\circ; \quad \omega = 3\,s^{-1}\,; \quad \left|G_1(j\omega)\right| = 4\,dB \qquad K_I = \frac{\omega}{\mid G_1(j\omega)\mid} = 1.9\,\,s^{-1}\,,$

Phasenreserve 60°:

bei
$$\phi_s = -30^\circ$$
; $\omega = 0.75 \, \text{s}^{-1}$; $|G_1(j\omega)| = 2.5 \quad K_I = \frac{\omega}{|G_1(j\omega)|} = 0.3 \, \text{s}^{-1}$,
 $G_R(p) = K_P \left(1 + \frac{1}{pT_n}\right) \quad K_P = K_I \cdot T_n \qquad G_R(p) = 1.2 \cdot \left(1 + \frac{1}{p \cdot 4s}\right)$,

Wendetangente:

PI-Regler:

$$\begin{split} T_u &= 0,5 \; s; \;\; T_g = 6 \; s \; ; \;\; K_S = 2,5 \; , \\ K_P &= 0,34/K_S \; {}^TT_g/T_u = 1,6 \; ; \; T_n = T_g = 6 \; s \; . \end{split}$$

Nach CHR wird die Nachstellzeit etwas größer gewählt, dadurch kann bei etwa gleichem Überschwingen des geschlossenen Kreises der K_P -Wert des Reglers vergrößert werden, die Ausregelzeit wird kleiner.

Bei I-Regler wird der Übergangsprozeß des geschlossenen Kreises langsamer, bei P-Regler tritt eine bleibende Regeldifferenz auf.

A3.
$$T_{u} = 1,5 \text{ s}; T_{g} = 12,5 \text{ s}; K_{s} = 3,25 \text{ ,} \\T_{g}/T_{u} = 8,33 \qquad n = 2 \text{ ; } T = T_{g}/2,72 = 4,6 \text{ s} \text{ ,} \\G(p) = \frac{3,25}{(1+4,6 \text{ p})^{2}} \text{ ,} \qquad 21,16 \ddot{v}(t) + 9,2 \dot{v}(t) + v(t) = 3,25 u(t) \text{ ,} \qquad P-T_{2} \text{ h}(t) = 3,25 \left[1 - \left(1 + \frac{t}{4,6}\right)e^{-\frac{t}{4,6}}\right] \text{ kennwerte Regelstrecke:} \\K_{s} = 3,25 \text{ ;} \quad T_{1} = T_{2} = 4,6 \text{ s} \text{ .} \\\text{Reglertyp: PID-Regler ,} \\K_{P} = 1,53 \text{ ;} \\T_{n} = 12,5 \text{ s} \text{ ; } T_{v} = 0,75 \text{ s} \text{ .} \end{cases}$$

$$K_{PR} = \frac{1}{|G_S(j\omega)|} = 50.1.$$

54,3 = 34,7 dB, der Fehler der grafischen Methode von etwa 1 dB (1 mm) resultiert aus der Asymptotennäherung des Frequenzganges.

Bei
$$\phi_s = -120^\circ$$
; $\omega = 0.48 \, \text{s}^{-1}$; $|G_1(j\omega)| = -19 \, \text{dB}$,
 $K_{PR} = \frac{1}{|G_s(j\omega)|} = 8.9$.

Ein PI-Regler beseitigt die beträchtliche bleibende Regeldifferenz.

A6. Momentengleichgewicht:

$$\begin{split} \ddot{\phi}_{M} \cdot \Theta_{M} + D_{M} \cdot \dot{\phi}_{M} + c_{TM} \cdot \phi_{M} + c_{TL} (\phi_{M} - \phi_{L}) &= M_{el} \\ \ddot{\phi}_{L} \cdot \Theta_{L} + D_{L} \cdot \dot{\phi}_{L} + c_{TL} (\phi_{L} - \phi_{M}) &= 0 \\ M_{el} &= h_{M} \cdot I_{M} \end{split}$$

Übergang in den Frequenzbereich:

$$\begin{split} p^{2}\phi_{M}\cdot\Theta_{M} + D_{M}\cdot p\phi_{M} + c_{TM}\cdot\phi_{M} + c_{TL}(\phi_{M} - \phi_{L}) &= h_{M}\cdot I_{M} \\ p^{2}\phi_{L}\cdot\Theta_{L} + D_{L}\cdot p\phi_{L} + c_{TL}(\phi_{L} - \phi_{M}) &= 0 \end{split},$$

,

$$\begin{split} \frac{\phi_{M}}{I_{M}} &= \frac{h_{M}}{c_{TM}} \cdot \frac{1 + p \frac{D_{L}}{c_{TL}} + p^{2} \frac{\Theta_{L}}{c_{TL}}}{\left(1 + p \frac{D_{M}}{c_{TM}} + p^{2} \frac{\Theta_{M}}{c_{TM}}\right) \cdot \left(1 + p \frac{D_{L}}{c_{TL}} + p^{2} \frac{\Theta_{L}}{c_{TL}}\right) + p \frac{D_{L}}{c_{TM}} + p^{2} \frac{\Theta_{L}}{c_{TM}}}{\frac{\phi_{M}}{I_{M}}} = 0.5 \cdot \frac{1 + 0.15 \cdot 10^{-3} p + 7 \cdot 10^{-6} p^{2}}{1 + 1.85 \cdot 10^{-3} p + 82.3 \cdot 10^{-6} p^{2} + 2.15 \cdot 10^{-9} p^{3} + 35 \cdot 10^{-12} p^{4}}, \\ p_{1} &= -11.2 \qquad +j \ 110; \\ p_{2} &= -11.2 \qquad +j \ 110; \\ p_{3} &= -19.5 \qquad -j \ 1526; \\ p_{4} &= -19.5 \qquad +j \ 1526, \\ G_{A}(p) &= \frac{\phi_{M}}{I_{M}} = k \cdot \frac{1}{(1 + 2d_{2}T_{02}p + T_{02}^{2}p^{2})} \cdot \frac{(1 + 2d_{1}T_{01}p + T_{01}^{2}p^{2})}{(1 + 2d_{3}T_{03}p + T_{03}^{2}p^{2})}; \\ k &= 1 \ \frac{rad}{A}, \quad T_{01} &= 2.65 \ ms; \qquad T_{02} &= 9 \ ms; \qquad T_{02} &= 0.65 \ ms; \\ d_{1} &= 0.028; \qquad d_{2} &= 0.1; \qquad d_{3} &= 0.013 \end{cases}, \end{split}$$

Bodediagramm:

Es eignet sich nur ein Regler, der im Bereich $\omega = 10^2 \dots 10^4$ einen Phasengewinn von etwa 60° beiträgt. Ein PID-Regler macht das.

Der technische PID-Regler hat die Übertragungsfunktion

$$G_{R}(p) = \frac{K_{P}}{1 + pT_{1}} \left(1 + \frac{1}{pT_{n}} + pT_{v} \right) = \frac{K_{P}}{1 + pT_{1}} \cdot \frac{1}{pT_{n}} \cdot \left(1 + pT_{n} + p^{2}T_{v}T_{n} \right).$$

Im Bereich $\,4T_v^{} \leq T_n^{}\,$ hat die quadratische Funktion reelle Wurzeln

$$G_{R}(p) = \frac{K_{P}}{1 + pT_{1}} \cdot \frac{1}{pT_{n}} \cdot (1 + pT_{D1}) \cdot (1 + pT_{D2}); \qquad T_{D} = \frac{Tn}{2} \left(1 \pm \sqrt{1 - \frac{4T_{v}}{T_{n}}} \right).$$

Der Übergang zur positiven Phase des PID-Reglers

$$\omega_{\mp} = \sqrt{\omega_{eD1} \cdot \omega_{eD2}} = \sqrt{\frac{1}{T_{D1} \cdot T_{D2}}} = \sqrt{\frac{1}{T_n \cdot T_v}}$$

muß bei $\omega < 1000 \text{ s}^{-1}$ sein, da der Kreis sonst instabil wird.

Da im Bereich der Resonanzfrequenzen die Amplitude nicht verstärkt werden soll,

ist das Verhältnis $\begin{tabular}{c} \frac{T_{D1}}{T_{D2}} \cong 10 \end{tabular}$ anzustreben.

Der K_P-Wert wird so gewählt, daß die Durchtrittsfrequenz ω_D bei 3000 s⁻¹ liegt. Die Siebzeitkonstante T₁ darf nur sehr klein sein (T₁ < 30 µs), damit der Phasengewinn im Bereich der Durchtrittsfrequenz ω_D nicht verschlechtert wird.

Ergebnisse der Modellierung (ohne T_1):

Ausgangswerte vor der Optimierung			nach der Optimierung
Verstärkungsfaktor	K _P :	0,6	0,99
Nachstellzeit	T _n :	0,1 s	0,046 s
Vorhaltzeit	T _v :	0,1 ms	3,9 ms

Das Diagramm zeigt das Übergangsverhalten bei Führung vor und nach einer Optimierung.

Die Wahl komplexer Nullstellen zur Kompensation ist nicht zu empfehlen, da in der Praxis stets eine robuste Lösung gefordert wird,

d.h. die Unempfindlichkeit des Systems gegenüber Paramterschwankungen. Spezielle Optimierungsergebnisse mit $4T_v > T_n$ sind deshalb nicht geeignet.

LÖSUNGEN ZUR AUFGABENSAMMLUNG			
1. GI	. GRUNDBEGRIFFE, MATHEMATISCHE GRUNDLAGEN		
1.1. 1.1.1 1.1.2 1.1.3	 Struktur, Wirkungsplan, technologisches Schema Ableiten der mathematischen Gleichungen aus dem Wirkungsplan Darstellung des Wirkungsplanes nach den Gleichungen Modellgleichungen und technologisches Schema 	29 29 30 31	
1.2. 1.2.1 1.2.2	Regelungtechnische Aufgabe, Analyse technischer Systeme.Regelung technischer Anordnungen.Regelungstechnische Analyse technischer Anordnungen	33 33 34	
1.3.	Linearisierung, Arbeitspunkt	36	
1.4. 1.4.1 1.4.2 1.4.3 1.4.4 1.4.5 1.4.6	Übertragungsverhalten von SystemenDifferentialgleichungSprungantwort, ÜbergangsfunktionLaplace-Transformation, ÜbertragungsfunktionDiskretes ÜbertragungsverhaltenFrequenzganganalyseÜbertragungsverhalten von Systemen, Komplexaufgaben	37 37 38 40 42 43 47	
2. KI	ENNWERTERMITTLUNG	54	
2.1.	Kennwertermittlung im Zeitbereich		
2.2.	Kennwertermittlung im Frequenzbereich		
3. RE	EGELEINRICHTUNGEN UND REGELALGORITHMEN	57	
3.1.	Zweipunktregler		
3.2.	Stetige Regeleinrichtungen	58	
4. EN	NTWURF UND VERHALTEN EINSCHL. LINEARER REGELKREISE	59	
4.1.	Übertragungsverhalten des Regelkreises		
4.2.	Stabilität des Regelkreises		
4.3.	Einstellregeln	62	