

Lehrgebiet Physik

Wärmetransport (Wärmestrahlung, Wärmeübergang)

Serie WT-2

Fachbereich Grundlagenwissenschaften

- 1. Ein Heizkörper H1 ist mit weißer Farbe, ein anderer H2 mit schwarzer Farbe gestrichen und ein dritter H3 ist verchromt.
 - a) Welcher Heizkörper heizt sich in der Sonnenstrahlung am stärksten / am schwächsten auf?
 - b) Welcher Heizkörper gibt im Zimmer bei gleicher Wassertemperatur die meiste Wärme ab?
- 2. Unmittelbar vor dem Kamin des Buckingham-Palastes steht ein Strahlungsschirm (Emissionsvermögen $\epsilon=1$) aus dünnem Metall. Er empfängt Parallelstrahlung des 900°C heißen Feuers und emittiert als Folge seiner mittleren Temperatur $\vartheta_{\rm M}$ in den Ballsaal (20°C).

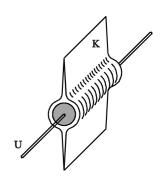
Wie groß ist diese mittlere Metallschirmtemperatur?

3. Die Flammengase am Kessel einer Etagenheizung haben die Temperatur $\,\vartheta_1\,$. Die Wärme gelangt in das Wasser (spezifische Wärmekapazität $\,c_W\,$) durch die Übertragungsfläche A. Die Dicke der Wandung ist d, die Rücklauftemperatur des Wassers $\,\vartheta_2\,$. Das Wasser wird mit der Stromstärke $\,\dot{V}\,$ durch den Kessel befördert.

Stahl: $\lambda = 58 \text{ W/(m} \cdot \text{K)}$

Flammengase/Stahl: $\alpha_1 = 19 \text{ W/m}^2 \cdot \text{K}$

Stahl/Wasser: $\alpha_2 = 4.7 \text{ W/(m}^2 \cdot \text{K)}$


 $\vartheta_{\rm i} \,=\, 300^{\rm o}{\rm C}\,, \quad \vartheta_{\rm 2} \,=\, 60^{\rm o}{\rm C}\,, \quad \dot{\rm V} \,=\, 6,4 {\rm l/min}\,, \ \, {\rm d} \,=\, 3,0 \ \, {\rm mm}, \qquad {\rm A} \,=\, 1,0 \ \, {\rm m}^2\,. \label{eq:delta_interpolation}$

Wie groß ist ungefähr die Vorlauftemperatur $\,\vartheta_3\,$, mit der das Wasser den Kessel verläßt?

Die Wassertemperatur entlang der Wärmeübertragungsstrecke im Kessel soll linear von ϑ_2 nach ϑ_3 ansteigen.

4. Ein elektrischer Widerstand $R=1~k\Omega$ wird mit einem Kühlblech K umgeben. Dieses darf eine konstante Temperatur von max. $\vartheta_{\rm K}=40^{\circ}~{\rm C}$ haben. Spannung $U=24~{\rm V}$, Luft- bzw. Umgebungstemperatur $\vartheta_{\rm L}=20^{\circ}~{\rm C}$, Emissionsgrad Kühlblech $\epsilon=0.9$, Wärmeübergangskoeffizient $\alpha=6~{\rm W/m^2K}$.

Welche Fläche A (Summe aus Vorder- und Rückseite) muß das Kühlblech mindestens haben ?

5. In der Mitte einer Werkhalle (Strahlungskoeffizient der inneren Wände $c_w = 5.41 \frac{W}{(m^2 K^4)}$) hängt ein

Thermometer (Strahlungskoeffizient $c_T = 5{,}35 \text{ W/(m}^2\text{K}^4)$). Es zeigt zeitlich konstant $\vartheta_T = 18^\circ \text{ C}$

an. Durch Infrarotmessung ist die mittlere Temperatur der Hallenwände $\vartheta_{\rm w}=14^{\circ}$ C bekannt. Für den Wärmeübergangskoeffizient Thermometer / Hallenluft wird $\alpha=4$ W/ ${\rm m^2}{\rm K}$ geschätzt. Die wahre Temperatur der Hallenluft liegt über 18° C.

- a) Erläutere die Begriffe 'Stahlungsgleichgewicht' und 'stationär'!
- b) Berechne die vom Thermometer ausgehende Strahlungsstromdichte!
- c) Berechne die wahre Lufttemperatur!
- d) Was müßte man tun, um mit dem Thermometer die wahre Lufttemperatur zu messen?