A
Fachhochschule Jena
University of Applied Sciences Jena

Fachbereich Grundlagenwissenschaften

Lehraebiet Physik

Wärmetransport (Wärmeleitung, Wärmeübergang, Wärmedurchgang)

Serie WT-1

1. Ein Kupferstab von 1,57 m Länge und einem Durchmesser von 100 mm ist über seinen Umfangs wärmeisoliert. Zwischen seinen Enden wird eine Temperaturdifferenz von 100 K aufrechterhalten. ($\lambda_{Cu}=350~W/(m\cdot K)$

Berechnen Sie die in einer Stunde übertragene Wärmeenergie und den Wärmeleitwiderstand.

2. Es ist eine ebene Wand mit den Oberflächentemperaturen T_1 und T_2 $(T_1 > T_2)$ und der Stärke d gegeben. Die Wärmeleitfähigkeit ist temperaturabhängig $\lambda = a + b T$ a) Wie groß ist die Wärmestromdichte durch die Wand?

Zusatzaufgabe:

- b) Berechne und zeichne den Temperaturverlauf in der Wand!
- 3. Durch eine 3-Platten-Anordnung fließt ein 1-dimensionaler Wärmestrom. Im Material 1 wird durch Heizen $\vartheta_1 = 80^{\circ}\text{C}$ aufrechterhalten. Die Randtemperaturen $\vartheta_2 = 60^{\circ}\text{C}$ und $\vartheta_3 = 50^{\circ}\text{C}$ des Materials 3 $\left(d_3 = 2\text{cm}, \lambda_3 = 1 \frac{\text{W}}{\text{mK}}\right)$ werden gemessen.
 - a) Welche Wärmeleitfähigkeit λ_2 hat das Material 2 (Schichtdicke $d_2 = 3cm$)?
 - b) Wie groß ist die Wärmestromdichte durch die Grenzfläche Material 1 / Material 2 ?
 - c) Mit derartigen Apparaturen werden unbekannte Wärmeleitfähigkeiten gemessen. Unter welchen Bedingungen ist der Temperaturverlauf in einer Schicht linear?
 - d) Berechne den k-Wert der Plattenkombination Material 2 / Material 3!
- 4. In eindimensionaler Schreibweise lautet die Energietransportgleichung

$$\rho c \cdot \frac{dT}{dt} + \frac{d}{dx} \left(-\lambda \cdot \frac{dT}{dx} \right) = \frac{j^2}{\kappa} \ .$$

Hierin sind j die elektrische Stromdichte im Draht der elektrischen Leitfähigkeit κ und der Feldstärke E.

$$(j = E \cdot \kappa)$$

Wie vereinfacht sich diese Differentialgleichung für

- a) konstante Wärmeleitfähigkeit λ
- b) konstante Wärmeleitfähigkeit sowie Quellen- und Senkenfreiheit
- c) stationäre Verhältnisse
- d) stationäre Verhältnisse und elektrisch isolierendes Material
- 5. Eine frei aufgehängte Metallkugel von 10 cm Durchmesser empfängt durch Sonnenstrahlung je Stunde 8 kJ. Welche Temperatur erreicht sie, wenn die Außentemperatur 9 = 15°C und der Wärmeübergangskoeffizient $\alpha = 18$ kJ/(m² hK) beträgt?

- 6. Welcher Wärmeübergangskoeffizient α ergibt sich für eine frei verlegte, 1,5 mm dicke Kupferleitung, die , mit der höchstzulässigen Stromstärke 25 A belastet, sich im Dauerbetrieb um 35 K über die Außentemperatur von 25°C erwärmt? (Spez. Widerstand $\rho = 0.02 \, \Omega \, \text{mm}^2 / \text{m}$)
- 7. Ein Hörsaal hat einfache Fenster von insgesamt 8 m² Fensterfläche und 4 mm Glasdicke. Welche Wärme geht im Verlauf von 8 Stunden verloren, wenn die Temperaturen innen 18°C bzw. außen -5°C betragen? Die Wärmeübergangskoeffizienten betragen 20 bzw. 50 kJ/(m² hK), die Wärmeleitfähigkeit des Glases 3 kJ/(m h K).
- 8. Ein Warmwasserspeicher von 30 dm² Oberfläche und einer Wanddicke von 0,50 cm soll bei einer Raumtemperatur von 25°C Wasser von 90°C speichern. Die Wärmeübergangskoeffizienten sind innen 1,2kW/(m² · K) , außen 6,0W/(m² · K) . Die Wärmeleitfähigkeit des Wandmaterials ist 1,0W/(m · K) .

Wärmeübertragungsfläche: $A = 30 \text{ dm}^2$

Berechnen Sie den Wärmedurchgangskoeffizienten und die mittlere Heizleistung, die zur Aufrechterhaltung der Temperaturdifferenz erforderlich ist.

- 9. Welche Wärmemenge dringt je Stunde durch ein $3\,\text{m}^2$ großes Doppelfenster in einen Kühlraum, wenn folgende Werte gegeben sind: Wärmeübergangskoeffizient außen $\alpha_1 = 105\,\text{kJ/(m}^2\,\text{h\,K)}$, innen $\alpha_2 = 25\,\text{kJ/(m}^2\,\text{h\,K)}$, Wärmeleitfähigkeit für Glas $\lambda = 2.7\,\text{kJ/(m\,h\,K)}$, Wärmeleitwiderstand des Luftzwischenraums $0.05\,\text{m}^2\,\text{h\,K/kJ}$, Scheibendicke d = 4 mm, Temperatur außen $\theta_1 = 30\,^{\circ}\text{C}$, innen $\theta_2 = -8\,^{\circ}\text{C}$?
- 10. Ein Verbundfenster der Fläche A besteht aus zwei Glasscheiben der Dicke d_1 , zwischen denen sich eine Luftschicht befindet. Das Glas hat die Wärmeleitfähigkeit λ_1 , die Luftschicht den Wärmedurchgangskoeffizienten k_2 . (Die Konvektion ist damit berücksichtigt.) Die Wärmeübergangskoeffizienten sind innen α_i (Zimmerluft ruhend) und außen α_a (Außenluft leicht bewegt). Die Innentemperatur ist ϑ_i , die Außentemperatur ϑ_a .

$$A = 2.0 \text{m}^2, d_1 = 3.5 \text{mm}, d_3 = 5.4 \text{mm}, \quad \lambda_1 = 0.85 \text{W}/(\text{m} \cdot \text{K}), k_2 = 5.9 \text{W}/(\text{m}^2 \cdot \text{K})$$

$$\alpha_i = 12.5 \text{W}/(\text{m}^2 \cdot \text{K}), \alpha_a = 25 \text{W}/(\text{m}^2 \cdot \text{K}), \quad \vartheta_i = 22 \text{°C}, \vartheta_a = -10 \text{°C}.$$

- a) Berechnen Sie die Heizleistung P_2 , die erforderlich ist, um den Energieverlust, den der Wärmestrom durch das Fenster verursacht, zu ersetzen!
- b) Welchen Wert P₁ nimmt die erforderliche Heizleistung an, wenn das Fenster nur eine Scheibe der Dicke d₃ hat?

- 11. Eine Hauswand besteht von innen nach außen aus
 - $s_1 = 2.5$ cm Putz $(\lambda_1 = 1W/(m \cdot K))$
 - $s_2 = 28.0 \text{ cm}$ Ziegel (R = 0,35m²K / W)
 - $s_3 = 2.5$ cm Putz $(\lambda_3 = \lambda_1)$

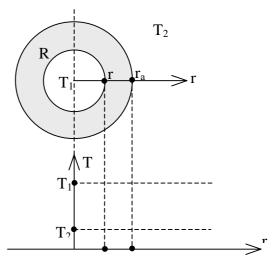
Mit einer IR-Kamera wurden gemessen:

Außenlufttemperatur $\vartheta_a = 0$ °C

Innenlufttemperatur $\vartheta_i = 25^{\circ}C$

Wandoberflächentemperatur außen $\vartheta_{oa} = 4^{\circ}C$

Wandoberflächentemperatur innen $\vartheta_{oi} = 20^{\circ}C$


- a) Berechne die Wärmestromdichte und den Wärmeverlust durch eine Wandfläche von 40 m².
- b) Berechne die Wärmeübergangskoeffizienten α_a (Grenzschicht außen) und α_i (innen) sowie die Wärmeübergangswiderstände R_i und R_a ! Wovon hängen die α -Werte ab?

Zusatzaufgaben

12. Durch eine Rohrleitung R mit konstanter Wärmeleitfähigkeit λ fließt Wasser mit der Temperatur T_1 .

Die Umgebungslufttemperatur ist kleiner. Die Temperatur bei $r=r_i$ wird mit T_i bezeichnet. T an der Stelle $r=r_a$ heißt T_a .

- a) Zeichne das T-Profil zwischen T_1 und T_2 in die Skizze ein.
- b) Begründe die Profilform zwischen r_i und r_a .
- c) Formuliere weitere Bedingungen, unter denen die eingezeichnete Profilform gilt.

Skizze:

- 13. Ein Einfachfenster von 2 m² besteht aus 3 mm starkem Glas. Die Lufttemperatur außen betrage -15° C, die im Raum 20° C.
 - a) Wie groß ist der Wärmestrom \dot{Q} , wenn $\alpha_a=15W/\left(m^2K\right)$ und $\alpha_i=7.5W/\left(m^2K\right)$ betragen und die Wärmeleitfähigkeit von Glas $0.8W/\left(mK\right)$ beträgt?
 - b) Um wie viel sinkt der Wärmeverlust, wenn anstelle des Einfach- ein Doppelfenster mit 10 cm Luftspalt und mit $R_{Luft} = \left(\frac{s}{\lambda}\right)_{Luft} = 0,18 \left(m^2 K\right)/W$ verwendet wird?

Berechnen Sie die Innenoberflächentemperatur des Fensters!

14 Eine Wand hat den Schichtenaufbau von außen nach innen wie folgt

Putz
$$(s_1 = 25\text{mm}, \lambda_1 = 0.87\text{W/mK})$$

Mauerziegel $(s_2 = ?, \lambda_2 = 0.93\text{W/mK})$
Putz $(s_3 = 15\text{mm}, \lambda_3 = 0.7\text{W/mK})$.

Die Raumtemperatur sei 20°C., die Außentemperatur 0°C. Für die Wärmeübergangskoeffizienten gelte $\alpha_i = 7.7W/(m^2K), \alpha_a = 25W/(m^2K)$.

Wie stark muss die Ziegelwand bemessen werden, wenn der Temperaturunterschied zwischen Raum und Innenwandoberflächentemperatur \leq 3 K betragen soll? Welche Wandstärke hat eine Gasbetonwand $(\lambda_4=0.24W/(m\cdot K))$ bei gleichen Bedingungen?