

Lehrgebiet Physik

Elektrostatik 2 - Elektrisches Feld

Serie ES

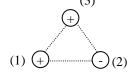
Pflichtaufgaben

Welche Ladung enthält ein auf 220 V geladener Kondensator von $C = 1.5 \mu F$?

Welcher Strom fließt aus einem Elektrometer der Kapazität 25 pF ab, wenn die Spannung in 24 s gleichmäßig von 60 V auf 42 V zurückgeht?

3 Auf welche Spannung muss ein Kondensator von $C = 0.2 \,\mu\text{F}$ geladen werden, damit er die Energie von

2 Ws enthält?


4 Mit welcher Kraft stoßen sich zwei Metallkugeln von je 1 mm Radius und dem Mittelpunktabstand von 3 cm ab, wenn sie beide auf die Spannung von 220 V gegen Erde aufgeladen werden?

Zwei kleine Kugeln der Masse $m=1\,g$ und der Ladung Q^+ sind an Seidenfäden der Länge $L=30\,cm$ an der gleichen Stelle aufgehängt. Ihre Mittelpunkte haben infolge der Abstoßung den Abstand $d=1\,cm$.

Berechnen Sie die Ladung Q⁺ im Punkt P!

6 Drei Ladungen gleicher Größe und der Polarität (+) (+) und (-) sind im gleichseitigen Dreieck angeordnet

(im Vakuum). Wie groß ist die Kraft F auf die Ladung Q₃?

Zwischen zwei liegenden Kondensatorplatten (Abstand l=8 mm, U=127 V) befindet sich Luft $\left(\rho_L = 1{,}3\text{ kg/m}^3\right)$ und ein schwebender Öltropfen, der elektrisch geladen ist.

$$\left(d_{\ddot{O}ltropfen} \ = \ 1,\! 2 \ \mu m \, , \ \rho_{\ddot{O}l} \ = \ 0,\! 86 \ kg/dm^3 \, , \ e^- \ = \ 1,\! 6 \, \cdot \, 10^{-19} As\right)$$

Wieviel Elementarladungen e⁻ befinden sich auf dem Öltropfen?

8 Eine Kugel mit der Maße m=4 g und der positiven Ladung $Q = +5 \cdot 10^{-6} \, \text{As}$ "fällt" in der Zeit von 1 s die Strecke von d=10 cm Plattenabstand (Vakuum) von der unteren zur oberen Platte eines Plattenkondensators. Wie groß ist die Spannung U?

In einem Zylinderkondensator (2 konzentr. Zylinder, Innenradius $R_1 = 3$ cm, Außenradius $R_2 = 5$ cm)

$$\vec{E} = k \cdot \frac{\vec{r}}{r^2}; \qquad \vec{r} = \begin{pmatrix} x \\ y \end{pmatrix}; \qquad r = |\vec{r}|$$

herrscht ein elektr. Feld der Feldstärke

 $(k=195,8~{
m V},{
m Ursprung}$ des Koordinatensystems auf der Zylinderachse!). Ein elektrisch geladener Körper $(Q=-2\cdot 10^{-12}~{
m C})$ wird entlang einer Geraden vom Punkt $A=(0;3~{
m cm})$ zum Punkt $B=(4~{
m cm};3~{
m cm})$ bewegt. Welche Arbeit W wird dabei verrichtet? Achten Sie auf das Vorzeichen von W! Muß Arbeit verrichtet werden (W>0) oder wird Energie frei (W<0), wenn der Körper von A nach B gebracht wird?

Zwei Ladungen $q_1 = 2.1 \cdot 10^{-8}$ As und $q_2 = -4 \cdot q_1$ sind 50cm voneinander entfernt. Finden Sie den Punkt auf der Geraden, welche die beiden Ladungen miteinander verbindet, in dem das elektrische Feld aufgehoben ist!

Ergänzende Aufgaben als zusätzliche Gelegenheit zur Übung und Vertiefung

Ein α -Teilchen, der Kern eines Helium-Atoms, hat die Masse von $6.7*10^{-27}$ kg und die Ladung von +2e. Wie groß ist die Stärke und wie die Richtung eines elektrischen Feldes, das seine Masse ausbalanciert?

$$\vec{E} = -\frac{6.7 \cdot 9.81m}{3.204} \cdot 10^{-8} \frac{N}{As} = 2.1 \cdot 10^{-7} \frac{N}{As}$$

Ein elektrisches Feld E mit einer durchschnittlichen Stärke von 150V/m zeigt abwärts in die Erdatmosphäre.

Ein Puder mit der Masse m=450g soll durch Aufladung in diesem Feld zum Schweben gebracht werden.

- a) Welche Ladung (Vorzeichen und Betrag) ist notwendig?
- b) Warum ist das Experiment praktisch nicht durchführbar? Gebe qualitative Gründe gestützt auf einer Überschlagsrechnung.

- Zwei gleiche und zwei gegensätzliche Ladungen von $Q = 2.0 \cdot 10^{-7} \, As$ werden 15cm auseinander gehalten.
 - a) Wie groß ist die Feldstärke E mittig zwischen ihnen?
 - b) Welche Kraft würde auf ein dort befindliches Elektron ausgeübt werden?