GRAVITATION

NEWTONsches GRAVITATIONSGESETZ (1666)

Newton: Analyse der Mondbewegung

bekannt: $r_{\text{Mondbahn}} \approx 60 R_{\text{Erde}}$

 R_{Erde} , $g \approx 10 \text{m/s}^2$, $\omega_{\text{Mond um Erde}}$

Aus a= $\omega^2_{\text{Mond um Erde}}$ r_{Mondbahn} errechnete NEWTON

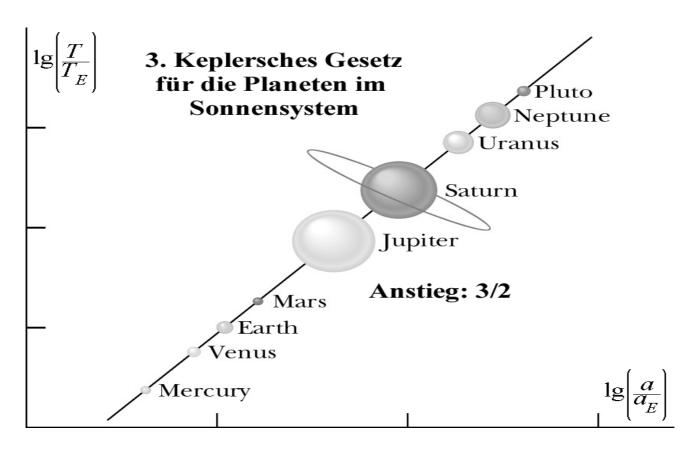
die Beschleunigungswirkung der Erde im Mondabstand r

zu

 $a=0.00273 \text{m/s}^2 = \text{g/60}^2$

Daraus folgte Hypothese $F_{Grav.} \sim 1/r^2$

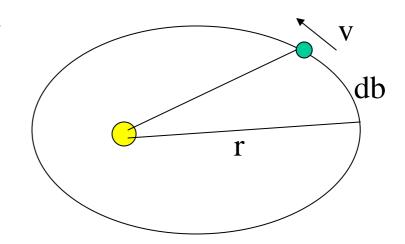
GRAVITATION


NEWTONsches GRAVITATIONSGESETZ

$$\overrightarrow{F}_{G} = -\frac{\text{const. } m_1 \ m_2 \ \overrightarrow{e}_r}{r^2}$$

 $(\overrightarrow{F}_G \text{ in Richtung } \overrightarrow{-e_r})$

const. : Grav.konst. f (G oder γ) = 6,67. 10⁻¹¹ N m²/ kg²


Cavendish (1798) Drehwaage, Eötvös (20. Jh.)

modifizierte Grafik aus D. Halliday, R. Resnick, J. Walker, Physik

$$\left(\frac{a}{a_E}\right)^3 = \left(\frac{T}{T_E}\right)^2 \qquad \lg\left(\frac{T}{T_E}\right) = \frac{3}{2}\lg\left(\frac{a}{a_E}\right)$$

Herleitung des 2. KEPLERsches GESETZ aus dem Impulserhaltungssatz

$$p=mv=const.$$
 \implies $L=J\omega=const.$ \implies (mr^2) $v/r=|r|$ $v=const.$

$$v = db/dt$$

r db = const.

Herleitung des 3. KEPLERsches GESETZ aus dem Gleichgewicht von Gravitations- und Zentrifugalkraft

$$m_{Planet} \omega^2 r = const. m_{Planet} . m_{Sonne} / r^2$$

$$\omega^2 r = \text{const.} \ m_{\text{Sonne}} / r^2$$
 $(\omega = 2\pi/T)$

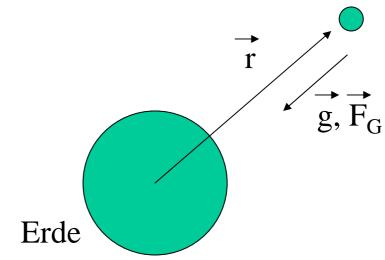
$$\frac{r^3}{T^2} = const$$

GRAVITATIONSFELD der ERDE

GRAVITATIONSGESETZ

$$\overrightarrow{F}_G$$
= - f. $m_1 m_2 \overrightarrow{e}_r / r^2$

EIGENSCHAFT DER PROBE


$$\left(-\text{ f. } m_{\text{Erde}} \overrightarrow{e}_{r} / r^{2} \right) . m_{\text{Probek\"orper}}$$

$$\vec{F}_G = + \vec{g}(r) \cdot m_{\text{Probek\"orper}}$$

Masse m im Gravitationsfeld der Erde

$$\overrightarrow{g} = \overrightarrow{g}(r) =$$

FELDSTÄRKE

