
Haftreibung Gleitreibung Rollreibung

Ermittlung der Haft- und Gleitreibungszahl

$$\tan \alpha = F_{HA} / F_N$$

Bei Beginn / Rutschen bzw. Rutschen mit v=const gilt:

$$\mathbf{F}_{HA} = \mathbf{F}_{R}$$
, $\mathbf{F}_{HA} = \mu_{o} \mathbf{F}_{N}$

also:
$$\mu_0 = \tan \alpha_0$$
 bzw. $\mu = \tan \alpha$

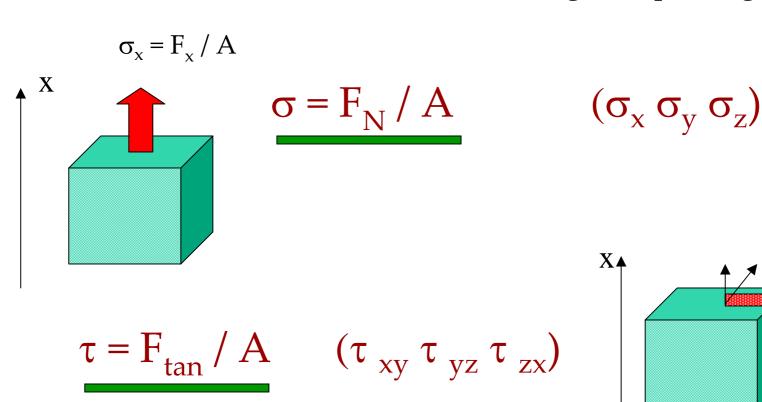
Schmiermittelreibung

$\mu_{\text{Schmiermittel}} = \sqrt{\eta v B / F_N}$	μο	μο	μ	μ
	tr	Öl	tr	Öl
Stahl - Stahl Glas - Glas Gummi - Asphalt		0,35	0,42 0,40 0,80	

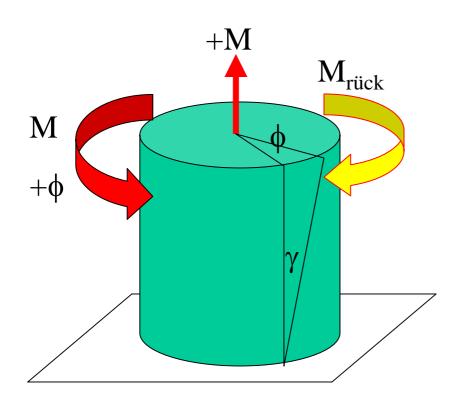
Dehnung und Kompression bei 3-dimensionaler Druckwirkung (Volumenelastizität)

Beim einachsigen Spannungszustand (1-dim. Längenänderung) ist die rel. Volumenänderung ΔV

$$\Delta V / Vo = \sigma / E (1 - 2\mu)$$


Beim dreiachsigen Spannungszustand (Volumenelastizität) ist die rel. Volumenänderung ΔV das Dreifache

$$\Delta V / Vo = \sigma / E \quad 3(1 - 2\mu)$$


Elastisches Verhalten von Festkörpern

Dreiachsigen Spannungszustand

Normal- und Tangentialspannung

Scherbeanspruchung - Verdrillung eines Drahtes

auslenkendes Moment $M = D_r \phi$

rücktreibendes Moment $M_{riick} = -D_r \phi$

$$\Sigma \mathbf{M} = \mathbf{J} \alpha$$

hier: mit

$$\Sigma M = M_{r\ddot{u}ck}$$

Scherbeanspruchung - Verdrillung eines Drahtes

Differentialgleichung

$$\frac{d^2\phi}{dt^2} + \frac{D_r}{J}\phi = 0$$

Lösung der Dgl.

$$\phi = \phi(t)$$

Typ: harmonisch

 $\sin / \cos (\omega_0 t)$

$$\omega_0 = 2\pi f = 2\pi/T$$

$$\omega_0 = \sqrt{D_r/J}$$