

3.2

Beim Frequenzz $\ddot{i}_{c}^{\frac{1}{2}}$ hler ist mit zwei Fehlerquellen zu rechnen. Diese beiden Fehler liegen in der Ungenauigkeit der Vergleichsfrequenz f_0 und dem Ziffernfehler von N_x . Wenn dabei die Frequenz nach folgender Gleichung gemessen wird

$$f_x = \frac{N_x}{T_0 \cdot N_v} = f_0 \cdot \frac{N_x}{N_v} \tag{1}$$

, dann ist der relative Fehler nach den Regeln der Fehlerfortpflanzung, wie folgt zu berechnen:

$$\frac{\Delta f_x}{f_x} = \pm \left(\left| \frac{\Delta f_0}{f_0} \right| + \left| \frac{\Delta N_x}{N_x} \right| \right) \tag{2}$$

Der absolute Quantisierungsfehler ΔN_x kann maximal ± 1 Digit betragen: Wenn das Tor unmittelbar nach dem Erscheinen des letzten gezi $;\frac{1}{2}$ hlten Eingangsimpulses geschlossen wird, dann ist N_x um 1 zu groi $;\frac{1}{2}$. Wenn das Tor unmittelbar vor einem Eingangsimpuls geschlossen wird, dann ist N_x um 1 zu klein. Daraus resultiert die Fehlerformel fi $;\frac{1}{2}$ r den relativen Fehler der Frequenzzi $;\frac{1}{2}$ hlung:

$$\frac{\Delta f_x}{f_x} = \pm \left(\left| \frac{\Delta f_0}{f_0} \right| + \frac{1}{N_x} \right) \tag{3}$$

Der relative Fehler der Vergleichsfrequenz f_0 kann sehr klein gehalten werden, wenn quarzstabile Generatoren verwendet werden. Fehlergri \vdots_2^1 i \vdots_2^1 en von $\left|\frac{\Delta f_0}{f_0}\right| < 10^{-6}$ sind ohne gri \vdots_2^1 i \vdots_2^1 ere Probleme erreichbar. Der relative Quantisierungsfehler $\frac{1}{N_x}$ geht um so weniger in das Mei \vdots_2^1 ergebnis ein, je gri \vdots_2^1 i \vdots_2^1 er die angezeigte Zahl N_x ist. Darauf ist bei der Wahl des Mei \vdots_2^1 bereichs zu achten.

¹[Schmusch(1993), S.269ff]