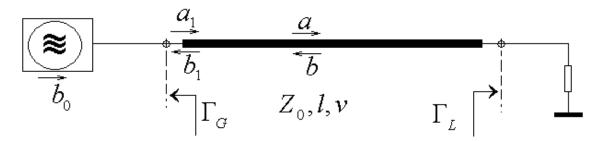
Wellenquellen

Jede Strom- oder Spannungsquelle speist eine Welle in eine Leitung ein. Im Umgang mit Wellengrößen a und b ist es von Vorteil solche Quellen als *Wellenguellen* zu behandeln.

Überführung in die Beschreibung mittels 2-Toren.



In dieser Beschreibung ergeben sich sehr einfache Zusammenhänge. Für die Quelle gilt:

 $a_1=b_0+b_1\cdot\Gamma_G$, Wobei b_0 die *Urwelle* der Wellenquelle ist und deutlich macht, das ein *aktives 2-Tor* vorliegt . Sie ist leicht zu berechnen, da bei reflexionsfreiem Abschluß $\Gamma_L=0$ $a_1=b_0$ ist und b_1 verschwindet.

$$b_0 = \frac{u_0}{1 + w_G}$$
 bei eine Stromquelle gilt
$$b_0 = \frac{i_0 \cdot w_G}{1 + w_G}$$

Mit diesen Größen soll nun der Fall der

Anpassung

Untersucht werden und gezeigt werden, das die erwarteten Ergebnisse eintreffen. Zuerst betrachten wir die

Wellenanpassung mit $W_L = Z_0$, $G_L = 0$

Es gibt nur die hinlaufende Welle

$$a = b_0 \cdot e^{-j \cdot \boldsymbol{b} \cdot z}$$
 und damit gilt

$$P_{L} = |a|^{2} = |b_{0}|^{2} = \frac{|u_{0}|^{2}}{|1 + w_{G}|^{2}} = \frac{U_{0}^{2}}{(Z_{0} + R_{G})^{2} + X_{G}^{2}} \cdot Z_{0} = |\underline{I}_{1}|^{2} \cdot Z_{0}$$

Konjugiert komplexe Anpassung

Gesucht ist die Last (Γ_L) für die die Leistung P_L zu Maximum wird. Wenn $\Gamma_L \neq 0$ gilt

$$\begin{split} b_1 &= a_1 \cdot e^{-j \cdot \boldsymbol{b} \cdot l} \cdot \Gamma_L \cdot e^{-j \cdot \boldsymbol{b} \cdot l} = a_1 \cdot \widetilde{\Gamma}_L \quad \text{damit gilt} \\ a_1 &= b_0 + a_1 \cdot \widetilde{\Gamma}_L \cdot \Gamma_G \qquad \text{also} \\ a_1 &= \frac{b_0}{1 - \widetilde{\Gamma}_L \cdot \Gamma_G} \qquad \qquad b_1 = \frac{b_0 \cdot \widetilde{\Gamma}_L}{1 - \widetilde{\Gamma}_L \cdot \Gamma_G} \end{split}$$

Wir wollen zunächst den Fall einer sehr kurzen Leitung mit $l \to 0$ und $\widetilde{\Gamma}_L = \Gamma_L$ betrachten

$$P_{L} = |a_{1}|^{2} - |b_{1}|^{2} = \frac{|b_{0}|^{2} \cdot (1 + |\Gamma_{L}|^{2})}{|1 - \Gamma_{G} \cdot \Gamma_{L}|^{2}}.$$

Zur Maximierung von P_L muß $arg\{G_L\}$ und $|G_L|$ entsprechend festgelegt werden. Der Winkel hat nur Einfluß auf den Nenner und muß so gewählt werden, dass $G_L \times G_G$ positiv reell wird, damit der Nenner minimal wird.

$$arg\{G_L\} = -arg\{G_G\}$$

Damit lautet P_L jetzt

$$P_{L} = \frac{\left|b_{0}\right|^{2} \cdot \left(1 + \left|\Gamma_{L}\right|^{2}\right)}{\left(1 - \left|\Gamma_{G}\right| \cdot \left|\Gamma_{L}\right|\right)^{2}}.$$

Dieser Ausdruck wird, wie man sich leicht klar macht, für $|\Gamma_L| = |\Gamma_G|$ maximal. Dabei wird dann

gleich der verfügbaren Leistung des Generators.

Es liegt als der Fall der *konjugiert komplexen Anpassung* vor. Ist die Länge der Leitung von Belang, muß Γ_L durch $\tilde{\Gamma}_L$ ersetzt werden.

Anpassverluste

Bei Fehlanpassung wird eine geringere Leistung an die Last abgegeben. Das Verhältnis von P_A zu P_L stellt die Verluste durch Fehlanpassung dar.

$$M = \frac{P_A}{P_L} = \frac{|1 - \Gamma_L \cdot \Gamma_G|^2}{(1 - |\Gamma_L|^2) \cdot (1 - |\Gamma_G|^2)}, M|_{dB} = 10 \cdot \lg(M)$$

Wirkungsgrad

Nicht immer ist der Fall der Anpassung anstrebenswert. Muß auf den Wirkungsgrad geachtet werden (Leistungsverstärker, Sendeendstufen), verbietet sich Anpassung, da in diesem Fall η nur 50% beträgt.

$$\boldsymbol{h} = \frac{P_L}{P_L + P_v}$$

Gehen wir davon aus, dass sowohl P_L als auch P_V vom gleichen Strom verursacht werden, ergibt sich η aus dem Verhältnis der verantwortlichen Wirkanteile der Impedanzen, also

$$h = \frac{r_L}{r_L + r_v} = \frac{R_L}{R_L + R_v}.$$

Ist die Leitungslänge zu berücksichtigen, ist R_L durch den transformierten Wert \tilde{R}_L zu ersetzen. Sollen Leitungsverluste Berücksichtigung finden gelten andere Zusammenhänge.

Resonanzabstimmung

Wichtig ist es noch den Wirkungsgrad im Zusammenhang mit den Anpassverlusten zu sehen. Sie sollten bei vorgegebenem Wirkungsgrad möglichst klein gehalten werden. Mit

$$P_{A} = \frac{U_{0}^{2}}{4 \cdot R_{G}} \quad \text{und} \quad P_{L} = \frac{U_{0}^{2} \cdot R_{L}}{\left| \underline{W}_{G} + \underline{W}_{L} \right|^{2}} = \frac{U_{0}^{2} \cdot R_{L}}{\left(R_{G} + R_{L} \right)^{2} + \left(X_{G} + X_{L} \right)^{2}}$$

wird

$$M = \frac{U_0^2 \cdot R_L}{|\underline{W}_G + \underline{W}_L|^2} = \frac{(R_G + R_L)^2 + (X_G + X_L)^2}{4 \cdot R_G \cdot R_L} \quad \text{und man}$$

sieht, dass $X_G = -X_L$ eingehalten werden, eine Forderung, die als **Resonanzabstimmung** bezeichnet wird.