Fachhochschule Jena University of Applied Sciences Jena

Fachbereich Elektrotechnik

Laborpraktikum Grundlagen der Elektrotechnik

Versuch

6

atum:
estat:
Unterschrift

Literatur

|1| Führer, A. u. a.:

Grundlagen der Elektrotechnik, Bd. 2 München: Hanser Verlag 1990

|2| Weißgerber, W.:

Elektrotechnik für Ingenieure, Teil 2 Braunschweig: Vieweg Verlag 1991

Erforderliche Begriffe

Bandbreite B, Abklingkonstante δ , Dämpfungsgrad D, Grenzfrequenzen f_{gu} bzw. f_{go} , Güte Q, Ortskurve des Reihenschwingkreises, Phasenwinkel ϕ , Resonanzfrequenz f_e oder f_d bzw. Resonanzkreisfrequenz ω_e des gedämpften Kreises , Resonanzfrequenz f_0 bzw. Resonanzkreisfrequenz f_0 des ungedämpften Kreises , Resonanzüberhöhung, Schwingkreise, Verlustwiderstand RVerlust, Verstimmung v,

1 Versuchsvorbereitung

1.1 Schwingkreis als komplexe Schaltung

1.1.1 Allgemeine Zusammenhänge

- 1. Geben Sie die Definition für den Begriff der Resonanzfrequenz an und leiten Sie die Gleichung zu deren Berechnung für den Reihen- und Parallelschwingkreis ab!
- 2. Skizzieren Sie das Zeigerdiagramm der Widerstände für $f = f_0$, $f = f_{qq}$ und $f = f_{qq}$!
- 3. Geben Sie die Definition der folgenden Begriffe und die Gleichungen zu deren Berechnung an!
 - untere bzw. obere Grenzfrequenz,
 - Bandbreite,
 - Güte.
- 4. Erläutern Sie kurz, wie die Grenzfrequenzen für die unter 2.1 genannten Funktionen messtechnisch ermittelt werden? Anhand welcher Funktion und welchen Zusammenhanges ist die Güte messtechnisch zugänglich?
- 5. Skizzieren Sie einen Reihenschwingkreis mit allen auftretenden Spannungen und Strömen. Entwickeln Sie daraus die Messschaltung für die unter 2.1 (Tabelle 1) benötigten Größen!

ETVAL 6 / 22.08.2007 Seite 1

1.1.2 Berechnungen

- Berechnen Sie die Induktivität des Reihenschwingkreises, wenn ein Kondensator von 2,2μF verwendet werden soll und die Resonanzfrequenz f = 100Hz betragen soll!
 Welchen Verlustwiderstand besitzt die Spule, wenn bei Resonanz eine Spannung von |U| = 2V anliegt und ein Strom von |I| = 10,5mA fließt? Der Kondensator ist als ideal zu betrachten!
- 2. Wie ist das Verhältnis der Blindwiderstände X_L und X_C bei Resonanz?
 Berechnen Sie die Blindwiderstände X_L und X_C sowie die zugehörigen Spannungen U_L und U_C bei Resonanz!
- Berechnen Sie die Grenzfrequenzen, die Bandbreite und die Güte aus den Bauelementekennwerten!

Berechnen Sie die Grenzfrequenzen die Bandbreite und die Güte noch einmal, wenn der im Schwingkreis wirkende Dämpfungswiderstand um 150Ω gegenüber dem oben berechneten Widerstandwert verringert wird!

- 4. Welche Schlussfolgerungen ziehen Sie aus dem Vergleich der Werte von Punkt 3 und Punkt 4?
- 5. Skizzieren Sie die Ortskurven für Z bzw. Y für den Reihen bzw. für den Parallelschwingkreis!

1.2 Dynamisches Verhalten von Schwingkreisen

1.2.1 Allgemeine Zusammenhänge

- Erarbeiten Sie sich die Verhältnisse am geschalteten Reihenschwingkreis für den Aperiodischen Fall, den Aperiodischen Grenzfall und den gedämpften Periodischen Fall! Hinweis: Literatur |1|, S. 282 ff,
- 2. Stellen Sie die Zusammenhänge für einen gedämpft schwingfähiges System bei ϕ = 45° in der komplexen Ebene dar (Pol-Nullstellen-Plan)!
- 3. Geben Sie die Definition der folgenden Begriffe und die Gleichungen zu deren Berechnung an! Tragen Sie die Gleichungen zur mathematischen Bestimmung der mit (*) gekennzeichneten Größen in **Tabelle 2** ein und berechnen Sie die Kennwerte des Schwingkreises für die in **Tabelle 2** angegebene Bestückung!

Vervollständigen Sie Tabelle 2!

- Resonanzkreisfrequenz ω_e des gedämpften Kreises,
- Resonanzkreisfrequenz ω₀ des ungedämpften Kreises,
- Kennwiderstand R_{Kenn},
 - Termwaerstand Teenn,
- Grenzwiderstand RGrenz,
- Abklingkonstante δ ,
- Dämpfungsgrad D, *
- Phasenwinkel φ und
- Güte Q.

1.2.2 Meßmethoden

Wie lässt sich der Grenzwiderstand R_{Grenz} physikalisch (Schwingungslehre) erklären?
 Leiten Sie daraus die Vorgehensweise zur experimentellen Ermittlung dieser Kenngröße ab!

2. Die Spannungswerte der Hüllkurve der gedämpften Schwingung folgen der Funktion $u(t) = U_0 e^{-t}$

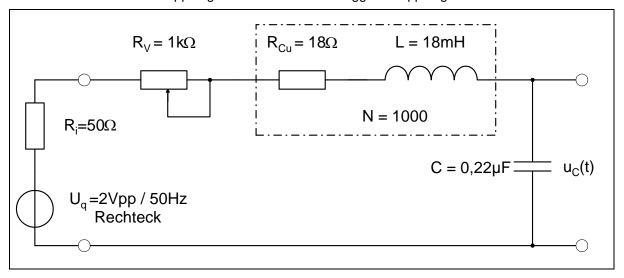
• Stellen Sie die Zeitfunktion graphisch dar (Skizze)!

• Entwickeln Sie unter Verwendung o. g. Gleichung eine Variante zur messtechnischen Ermittlung des Dämpfungsfaktors δ !

Wie wird die Resonanzfrequenz fe messtechnisch ermittelt?

Seite 2 ETVAL 6 / 22.08.2007

-δt


2 Versuchsdurchführung

2.1 Schwingkreis als komplexe Schaltung

- 1. Bauen Sie einen Reihenschwingkreis mit dem in 1.1.2.1 berechneten L-Wert und $C = 2,2\mu F$ auf! **Hinweise:**
 - Verwenden Sie zur Realisierung der Induktivität die "L-Dekade"!
 - Fügen Sie für die Phasenmessung einen Widerstand von $R=150\Omega$ in den Schwingkreis ein und verwenden Sie den Spannungsabfall als Bezugsgröße zur Phasenmessung am Y_A Eingang des Oszilloskops!
- Messen Sie den Strom |I|, den Phasenwinkel ϕ , die Spannungen am Kondensator als |UC1| und |UL| bei einer konstanten Spannung von |U| = 2V über der Gesamtschaltung in einem
 - Frequenzbereich von 40 Hz \leq f \leq 160 Hz. Tragen Sie die Werte als |UC1| in die **Tabelle 1** ein!
- Wiederholen Sie die Spannungsmessung am Kondensator ohne den Widerstand R = 150Ω bei einer konstanten Spannung von |U| = 2V für die gleichen Frequenzen! Tragen Sie die Werte als |U_{C2}| in die Tabelle 1 ein!
- Berechnen Sie |Z| der gesamten Schaltung für die angegebenen Frequenzen in Tabelle 1!
- Stellen Sie die Funktionsverläufe |I| = f(f), $|U_{C1}| = f(f)$ und $|U_L| = f(f)$ in einem Diagramm dar!
- Stellen Sie die Funktionsverläufe |UC1| = f(f) und |UC2| = f(f) in einem weiteren Diagramm dar! Berechnen Sie die Gütefaktoren auf der Basis der gemessenen Spannungswerte!
- Stellen Sie die Funktionsverläufe $\varphi = f(f)$ und |Z| = f(f) in je einem Diagramm dar!
- Tragen Sie in jedes der Diagramme die Grenzfrequenzen ein und berechnen Sie die Bandbreite!
- Begründen Sie evtl. auftretende Abweichungen!
- Zeichnen Sie auf der Basis der zur Verfügung stehenden Werte die <u>Z</u> -Ortskurve im Frequenzbereich 70 Hz ≤ f ≤ 140 Hz! (Verwenden Sie **Diagramm 1** im Hochformat und platzieren Sie die reelle Achse in der Mitte des Blattes!)

2.2 Dynamisches Verhalten von Schwingkreisen

- 1. Bauen Sie die Schaltung nach Bild 1 auf!
- Oszilloskopieren Sie die Ein- und Ausgangsspannung.
 Verwenden Sie DC-Ankopplung der Kanäle und DC-Triggerankopplung.

Bild 1

- 2. Ermitteln Sie den Grenzwiderstand R_{Grenz} und vervollständigen Sie **Tabelle 2**.
- 3. Ermitteln Sie für RV = 0 Abklingkonstante δ , Resonanzkreisfrequenz ω_e und Dämpfungsgrad D und vervollständigen Sie **Tabelle 2**.
- Warum kann bei der experimentellen Ermittlung des Dämpfungsgrades D an Stelle der Resonanzfrequenz ω_0 des ungedämpften Kreises die Resonanzkreisfrequenz ω_e des gedämpften Kreises verwendet werden?

ETVAL 6 / 22.08.2007 Seite 3

Messwerte und Darstellungen

f	40	60	80	90	f ₀	100	120	140	160	Hz
II										mA
φ										0
UL										V
UC1										V
UC2										V
Z										Ω

Tabelle 1

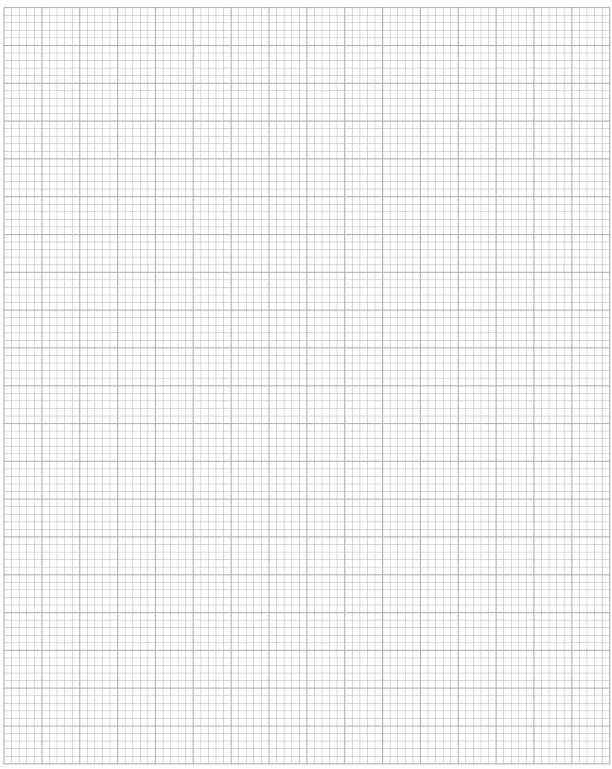


Diagramm 1

			Beachten Sie den Ausgangswiderstand des Generators mit $R_i = 50\Omega$								
			Bestückung: $R_i = 50\Omega \qquad R_{Cu} = 18\Omega, \qquad L = 18\text{mH}, \qquad C = 0.22\mu\text{F}$								
mathematisch	•			experimentell	experimentell						
Kenngröße	Gleichung	Zwischenschritt	Ergebnisse	Werte und Erge	Werte und Ergebnisse						
R _{Kenn} / Ω											
R _{Grenz} / Ω											
				Messwerte:	Messwerte:						
				t ₁	t ₂	u(t ₁)	u(t2)				
				in "Nullpunkt" verschoben							
Kenngröße	Gleichung	Zwischenschritt	Ergebnisse	Gleichung	Zwischenschritt		Ergebnis				
ω ₀ / kHz											
δ/s^{-1}											
D/1											

Tabelle 2

ETVAL 6 / 22.08.2007 Seite 5