FACH HOCH SCHULE JENA

Fachbereich Elektrotechnik

Laborpraktikum Grundlagen der Elektrotechnik

Versuch

1

Strom- Spannungsmessung						
Seminargruppe:		Datum:				
Praktikumsgruppe:		Testat:				
Teilnehmer:						
			Unterschrift			

Literatur

|1| Vömel, Zastrow

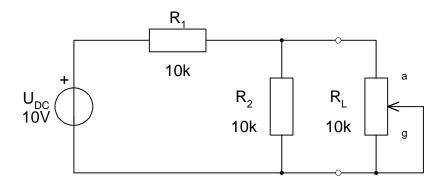
Aufgabensammlung Elektrotechnik 1

Braunschweig: Vieweg

|2| Weißgerber, W.:

Elektrotechnik für Ingenieure, Teil 1 Braunschweig: Vieweg 1991

2. Vorbereitung


- 1.1 Der Innenwiderstand als Kennwert zur der Charakterisierung von Volt- und Amperemetern.
- 1.1.1 Beschreiben Sie kurz die messtechnische Bestimmung des Innenwiderstandes eines Voltmeters.
- 1.1.2 Worin liegt die Ursache für das Auftreten des Innenwiderstandes eines Drehspulmesswerkes?
- 1.1.3 Charakterisieren Sie die Grenzwerte für die Innenwiderstände idealer Volt- und Amperemeter.
- 1.1.4 Skizzieren Sie die grundsätzlichen Varianten zur Messbereichserweiterung für Voltmeter und Amperemeter.

1.2 Strom- und spannungsrichtiges Messen

- 1.2.1 Skizzieren Sie eine spannungsrichtige Schaltung zur messtechnischen Ermittlung eines Widerstandes R einschließlich der auftretenden Größen!
 Leiten Sie die Gleichung zur exakten messtechnischen Bestimmung des Widerstandes R her!
 (Berechnung aus Messwerten unter Berücksichtigung des Innenwiderstandes der Messgeräte)
- 1.2.2 Skizzieren Sie eine stromrichtige Schaltung zur messtechnischen Ermittlung eines Widerstandes R!

Geben Sie die Gleichung des Ersatzwiderstandes an, über dem die Spannung gemessen wird. Bei welcher Relation der beteiligten Größen kann der Einfluss realer Messgeräte als vernachlässigbar angesehen werden

1.3 Strom- und Spannungsmessung an Reihen und Parallelschaltungen

Der Widerstand R_L wird durch ein Potentiometer realisiert. Auf der Skala sind die Markierungen a – g aufgetragen, die sechs gleiche Teile des Stellbereiches markieren.

Berechnen Sie URL und IRL in den Schleiferstellungen a - g!

Bestimmen Sie dazu rechnerisch die Werte von RL anhand des Gesamtwertes und der gegebenen Teilung!

Hinweise:

Welche Grundschaltung ist im Bild dargestellt?

Welcher adäquate Algorithmus ergibt sich für die Lösung des Problems?

Stellen Sie den Rechenweg und die Ergebnisse tabellarisch dar!

Schleifer- markierung	а	b	С	d	е	f	g
Größe							
RL / k = f(a-g) berechnet							
U _{RL} /V							
I _{RL} / mA							

2. Versuchsdurchführung

2.1 Innenwiderstandsbestimmung am Amperemeter MX 52 und MX 54

Bauen Sie die angegebene Messschaltung auf und stellen Sie die vorgegebene Spannung ein! Messen Sie die Ströme in der Messschaltung und die Spannungen über dem Amperemeter für die in der Tabelle 1 angegebenen Strommessbereiche bei den jeweils geforderten Reihenwiderständen.

Wählen Sie Messbereiche des Amperemeters über die "Range"-Taste manuell aus!

Berechnen Sie die Innenwiderstände R_{i A} in den einzelnen Messbereichen beider Geräte und tragen Sie die Werte an entsprechender Stelle in die Tabelle ein!!

MX 54				
Messbereich	500μΑ	5mA	50mA	500mA
R _V /Ω	100k	10k	1k	100
U/V				
I/A				
R _{i A} /Ω				

MX 52				
Messbereich	Х	Х	50mA	500mA
R _V /Ω	Х	Х	1k	100
U/V	Х	Х		
I/A	Х	Х		
R _{i A} /Ω	X	Х		

Tabelle 1

Ziehen Sie Schlussfolgerungen über die Qualität und die Einsatzauswahl beider Messgeräte als Strommesser!

2.2 Strom - und spannungsrichtige Messung

Messobjekte: $R_1 = 330k\Omega$ mit P = 0.5 W und $R_2 = 10\Omega$ mit P = 2W

 a) Berechnen Sie für beide Messobjekte vor der Messung den höchstzulässigen Strom und die höchstzulässige Spannung mit dem dieser Widerstand betrieben werden darf.
 Tragen Sie die ermittelten Werte in folgendende Tabelle ein!

	U _{max}	I _{max}
Messobjekt 1 (R ₁ = 330kΩ, P = 0,5W)		
Messobjekt 1 (R ₂ = 10Ω , P = $2W$)		

- b) Markieren Sie das Messobjekt in der Tabelle, das bei unsachgemäßem Vorgehen gefährdet ist!
- c) Messen Sie jeweils den Wert der Messobjekte mit der Ohmmeterfunktion eines Digitalmultimeters (DMM) und vervollständigen Sie die Angaben für die Sollwerte in den Tabellen!
- d) Ermitteln Sie den Widerstandswert beider Messobjekte durch Strom und Spannungsmessung unter Verwendung von **Zeigermessgeräten!**

Messen Sie dabei sowohl stromrichtig als auch spannungsrichtig und ergänzen Sie die Tabellen! **Hinweis:** Wie kann durch Verlegen nur einer Messleitung die Messschaltung umgebaut werden?

 R_1 = 330kΩ: Verwenden Sie für beide Messungen die gleichen Spannungswerte!

	U /V	I /mA	R _{Soll} /kΩ (DMM)	R _{Ist} /kΩ (berechneter Wert)	Rist - Rsoll / %
stromrichtig	10V				
spannungsrichtig	10V				

 R_2 = 10Ω: Verwenden Sie für beide Messungen die gleichen Stromwerte!

Hinweis:

Stellen Sie <u>vor der Messung</u> die Strombegrenzung am DC-Konstanter auf den gewählten Meßstrom ein!

	U /V	I /mA	R _{Soll} /kΩ (DMM)	R_{lst}/Ω (berechneter Wert)	$\frac{R_{\text{ist}} - R_{\text{soll}}}{R_{\text{soll}}} / \%$
stromrichtig		100			
spannungsrichtig		100			

Diskussion: Formulieren Sie einen Grundsatz für die Messung von Strom und Spannung an einem Widerstand mit minimalem Messfehler!

2.3 Strom- und Spannungsmessung an Reihen und Parallelschaltungen

Skizzieren Sie die Schaltung aus der Vorbereitung und ergänzen Sie die Darstellung, um die zur
spannungsrichtigen Aufnahme der Messgrößen URL und IRL notwendigen Messgeräte!

N	1esssc	ha.	ltur	ıα.
ıv	100000	ı ıa	ILUI	ıu.

Messen Sie URL und IRL und berechnen Sie RL aus den Messwerten. Ergänzen Sie die angegebene Tabelle!

R3	а	b	С	d	е	f	g
U _{RL} /V							
I _{RL} / mA							
R _L /Ω							

Vergleichen Sie die messtechnisch ermittelten Ergebnisse für R∟ mit den Berechnungen aus der Vorbereitung!

Ergebnissen.								