

Mikrosensorik

Prof. Karsten König

Lehrstuhl für Mikrosensorik & AVT Naturwissenschaftlich-Technische Fakultät II: Physik und Mechatronik

Dr. Velten, Dr. Ruf, Dr. Anhut

Schwerpunkte

Chromosom

Siebelektrode aus Silizium

und Analysetechniken Lithographie, additive Schichtverfahren, Micromachining

Lasermikroskopie, AFM, EM

Mechanische Mikrosensoren

Mikrosensoren für Druck, Beschleunigung, Volumenfluß, Drehrate

Optische Sensoren / Biosensoren

DNA-Chip, Protein-Chip, Biozell-Chip, evaneszenter Biochip, optische Temperatur- und Kraftmesser

(Elektro-) Optische Sensorsysteme

Strahlquelle natürlich: Sonne Lampen Laser: Strahlquelle für Herstellung

(Excimerlaser-Lithographie) und Bestandteil EO-Sensorsystem (Radarsysteme, Medizintechnik)

Strahlführung

Lichtleiter Miniaturoptik (Grin-Linsen) Integrierte Wellenleiter

Photodetektoren

CCD-Kamera (PMT) Handy-Markt Überwachung Bio- und Chemosensoren

Miniaturisierte Sensorsysteme

Laser (Laserdiodenabmessung <500 μ m, Bestrahlungsspots <400 nm) Strahlführung (evaneszente Wellen: d<100 nm, Lichtleiter: 5 μ m) Photodetektoren (Si-CCD-chip)

Outline

1. definition EO sensor system

- 2. optics basics
- 3. technology basics
- 3.1. light sources
- 3.2. light transmission systems
- 3.3. photodetectors
- 4. system design

requirements applications

1. EO Sensorsystem

Elektrooptische Sensorsysteme sind:

- -integrierte Kombination von optischen, elektro-optischen und elektronischen Subsystemen
- nutzt die Wechselwirkung elektromagnetischer Felder / Strahlungsenergie mit Materie im UV/VIS/IR Spektralbereich
- stellt Informationen über Lichtquellen, Targets, Transmissionsmedium und Komponenten bereit

Konfiguration

Selbstrahlendes Objekt Objekt in Transmission Objekt im Medium

Beispiel 1: Weltraum LIDAR

Beispiel 2: Tumordiagnostik und Nichtinvasives Sauerstoff-Imaging im Gehirn Neugeborener

Beispiel 3: Nachweis toxischer Substanzen in der Luft

UVSentry

bis 850 m Reichweite

Sensitivität: parts-per-trillion (Hg, SO₂, No_x, Formaldehyd etc.) 180 nm - 230 nm spectrometer

4. Biomikrosensor basierend auf evaneszenten Wellen

150 nm Ta_2O_5 -Schicht (n=2.092) auf AF45 Glass (1.496)

planarer Zweiphotonen-Wellenleiter Zeptosens AG, CH Biosensor&Bioelectronics Award 2003

Evaneszente Welle in der Lösung Geführte Welle im Wellenleiter (TM₀₀) Evaneszente Welle im Glasträger

10000

1000

100

Cy5-BSA [pM]

Verdünnungsserie

....

...

....

10000 pM Cy5-BSA

100

10

0.1

0.01

10

LOD = 1 Zeptomol (600 Proteine) / Spot

0.00

Fluoreszenz Intensität

Photonendetektor:

CCD-Kamera PMT (konfokal)

Sensorsystem Auge

		~							
N	//ว/	10	A	00	Δ	1.1	20	n	C '
- I V		35					ua	U	5.

 $1 \text{ dpt} = 1 \text{ m}^{-1}$

Äußerer Bulbusdurchmesser24Innerer Bulbusdurchmesser22Dicke der Cornea0Tiefe der vorderen Augenkammer3Dicke der Linse3Abstand zwischen Linse und Netzhaut15Dicke der Netzhaut15Dicke der Netzhaut55Brechwert des gesamten Auges55Brechwert der Cornea43Brechwert der Linse15Abstand beider Pupillen67

24,0 mm 22,5 mm 0,5 mm 3,6 mm 3,6 mm 15,6 mm 0,1 - 0.6 mm 59 Dioptrien (Fernsicht) 43 Dioptrien 19 Dioptrien (Fernsicht) 61-69 mm

Photosensoren

Stäbchen

Stäbchen: Aufbau. S synaptische Zone, N Nukleus, M Mitochondrien, C Cilium, AS Außensegment, PM Plasmamembran, ID innerer Disk (Scheibchen).

120 Mio/Retina

160.000/mm² im Gebiet maximaler Konzentration (Foveola: 0) ID enthält Rhodopsin, Photoaktivierung induziert elektr. Signal Schwachlichtsehen

Zapfen

ca. 5 Mio/Retina (200.000/mm² maximal, Foveola) RGB Bild: S-Zapfen: 440 nm Absorptionsmaximum M-Zapfen: 535 nm, L-Zapfen: 565 nm Farbsehen

Photozeptor-Molekül: Rhodopsin ("Sehpurpur")

Chromophore Gruppe: Retinal Farbsehen: mehrere Zapfentypen (mindestens 3) mit unterschiedlichen Absorptionsmaxima Mensch: 440 nm, 530 nm, 570 nm

Licht muss entwicklungsbedingt zunächst Schicht der Ganglienzellen, Bipolaren, Horizontalen und

die Innensegmente durchdringen, bis es vom lichtempfindlichen Aussensegement aufgenommen wird Zahlreiche photoinduzierte Zwischenprodukte induzieren schliesslich Potentialänderungen

Lasertherapie

Brechkraftkorrektur durch Cornea- Bearbeitung

1983: erster Lasereinsatz (Trokel, Srinivasan, Braren)

1987: kommerzieller Corneachirurgie-Laser (>2 Mio Patienten jährlich)

direkter Cornea-Abtrag (Keratotomie)

bevorzugt Excimer-Laser bei 193 nm

 $(E_{193} = 6.4 \text{ eV}, E_{bonds} = 3.5 \text{ eV})$

Photodekomposition

Präzision: < 0.5 μ m, typische Abtragungstiefe ca 100 μ m Problem: geringe Eindringtiefe der UV-Strahlung

Änderung der Cornea- Biomechanik durch

Kollagenschrumpfung

bevorzugt Ho:YAG-Laser (2.1 μm) Aufheizung des Kollagens auf 50-55°C Schrumpfung auf 1/3 Photothermische Keratoplastie

Einsatz mechanischer Werkzeuge zur Entfernung der Epithelschicht (Flap-Generation)

LASIK-Methode

LASIK

LASIK mit dem Excimerlaser

Physik

Technologie

Beugung Streuung Absorption Reflexion Brechung Laser optische Komponenten Detektoren

System Engineering

Komponenten Subsysteme Systeme Funktionalität Mission

2. Optics Basics

E = hv (Teilchennatur) $c = \lambda v$ (Wellennatur)

Thermische Strahlungssensoren

Berührungslose Messung der von der Körperoberfläche emittierten Wärmestrahlung Spektrum = f(T)

NIR: $0,7 - 1,5 \ \mu m$ MIR: $1,5 - 6,0 \ \mu m$ FIR: $6,0 - 40 \ \mu m$ Ultrafernes IR: $> 60 \ \mu m$

Temperaturstrahler

Sonne "Glühlampe" (Wirkungsgrad Lichtproduktion <5%)

Plancksches Strahlungsgesetz L= $2\pi hc^2/\lambda^{-5}(1/exp(hc/(\lambda kT)-1))$

Strahlungsfluss $\Phi = dE/dt = Strahlungsleistung$ Spezifische Ausstrahlung M = $d\Phi/dA$ A: Flächenelement Strahlaustrittsraumwinkel d Ω in sr Strahldichte L (Strahlungsfluss Φ auf "gesehene" Fläche cos α dA und d Ω) = $d^2\Phi/(cos\alpha dAd\Omega)$

Sonnenspektrum Sonne: wichtige Quelle in passiven Sensorsystemen

bezogen auf Temperatur eines schwarzen Strahlers: VIS: 6000 K (460 - 500 nm) 150 μm: 4400 K UKW: 10⁶ K

Solarkonstante: 1350 W/m² extraterristrische Strahlung (stellt Jahresmittelwert da) VIS: 50%, UV: 8%, IR:42%

Januar: 1410 W/m² Juli: 1310 W/m² (längerer Abstand Erde-Sonne)

Globalstrahlung: auf die Erde auftreffende Strahlung (direkt+ gestreut) (UVB: nur 23%, UVA: nur 72%, VIS: 91% der extraterr. Strahlung)

Monochromasie

Optisches Fenster von Zellen und Geweben

Divergenz

Temperaturstrahler

0,1 mrad (0.0057°): nach 1 km hat sich 1 mm Strahl auf 10 cm vergrössert

0,01 mrad: Mond: 3 km Spot

Erzeugung von Sub-Mikrometer Beleuchtungsspots

Kohärenz

Kohärentes Licht ist interferenzfähig.

Dies äussert sich als ungleichmässige Ausleuchtung (Laserspeckle) Und muss bei der Standortwahl des Detektors beachtet werden (Interferenzmaxima, -minima)

Erzeugung kurzer Laserpulse

Prinzip	Pulsdauer	Pulsenergie	Pulsleistung
Shutter (chopper) Relaxationsoszillation Güteschaltung (Q-switch) Modenkopplung (mode-locked)	ms - s μs ns fs, ps	nJ - mJ µJ mJ mJ J nJ mJ	mW- W kW MW kW PW

kürzeste Laserpulse: ca. 3 fs (NIR) Attosekunden (X-ray)

 $s = ct = 3x10^8 \text{ m/s} \text{ x} 3x10^{-15} \text{ s} = 900 \text{ nm}$

Bestrahlungsparameter

Laser-Parameter	Symbol	Einheit
Wellenlänge (wavelength)	λ	nm, μm
Strahldurchmesser	d	mm
Pulsdauer (pulse width)	τ	fs, ps, ns, µs
Pulsfolgefrequenz (repitition frequency)	f	Hz
mittlere Leistung (mean power)	Р	mW, W, kW
Pulsleistung (peak power)	P _{Peak}	W, kW, MW, GW, TW
Pulsenergie (pulse energy)	$E = P_{Peak} \tau$	pJ, nJ, μJ, mJ
Bestrahlungs-Parameter	Symbol	Einheit
Bestrahlungsdauer	t	μs, ms, s, min
Spotgröße (irradiation area)	А	cm^2
Intensität (intensity)	I = P/A	mW/cm^2 - TW/cm^2
Energiedichte, Dosis	E/A = It	mJ/cm ² - GJ/cm ²
(energy density, fluence)		

Intensität I = P/A

Laserpointer				
Betriebsart	Р	d	Α	Ι
freilaufend	1 mW	1 mm	$\sim 1 \text{ mm}^2$	100 mW/cm^2
fokussiert (Objektiv)	1 mW	0.5 µm	$0.25 \ \mu m^2$	400 kW/cm^2

Lichtquelle	P (W)	$I (W/cm^2)$			
		ohne Fokussierung	Netzhaut	Objektiv	
Sonne	$4 \ge 10^{26}$	0.1 (Erde)	10	500	
Laserpointer	0.001	0.1	1300	400000	
Nd:YAG-Laser	100	10000		$4x10^{9}$	
Ti:Sa Laser	>1013	>10 ¹⁵		$> 10^{20}$	

Laser - Materie - Wechselwirkung

Optische Parameter

Brechzahl, Brechungsindex n
Absorptionskoeffizient μ_a Streukoeffizient μ_s Anisotropie-Faktor g

Brechzahl n

• $n(\lambda) = c_0/c(\lambda) = c_L/c(\lambda) = \sin\alpha/\sin\beta(\lambda)$

Absorptionskoeffizient μ_a

- $T = e^{-\mu}a^{L}$ L: durch Streuprozesse ungerade Wegstrecke
- mittlerer freier Weg MFW zwischen Absorptionsereignissen: MFW=1/ μ_a
- Blutleere Dermis, 577 nm: $\mu_a = 2 \text{ cm}^{-1}$
- Atmosphäre $10,591 \mu m (CO_2) = 0.3636 \text{ km}^{-1}$

Lambert-Beer Gesetz (dünne Flüssigkeiten): $I = I_0 e^{-\epsilon cd}$

Streukoeffizient μ_s

- $T = e^{-\mu}s^{L}$ (keine Absorption)
- mittlerer freier Weg MFW zwischen Streuereignissen: MFW=1/ μ_s
- Blutleere Dermis, 577 nm: $\mu_s = 200 \text{ cm}^{-1}$
- Atmosphäre 10,591 μ m (CO₂) = 0.00465 km⁻¹

Anisotropie-Faktor g

• charakterisiert Streurichtung

 $-g = \langle \cos \theta \rangle$ θ : Streuwinkel

- g = 0 orientierunglos, Gedächnisverlust, zufälliger Weg, isotrop
- g = -1 totale Rückstreuung
- g = +1 keine Streuung
- Gewebe:
- g = 0.8 1.0 Vorwärtstreuung, $\theta = 37^{\circ} 0^{\circ}$
- Dermis, g(577nm) = 0.8
- nach 5 Streuereignissen orientierungslos, nach 95 weiteren absorbiert
- 1/(1-g) Streuereignisse: Orientierungsverlust
- $\mu_{s}(1-g) = \mu_{s}'$

Orientierungsverlust reduzierter Streukoeffizient

Eindringtiefe

- Mehrere Definitionen
- $d(\lambda) = 1/(3\mu_a^2 + 3\mu_a\mu_s')^{1/2}$
- d (λ): I(d) = 0.37 I_o

□ λ <500 nm: d < 1 mm, λ = 600-1000 nm: d = 1-5 mm

- Lichtintensität im Gewebe
- $I = I_o \cdot k \cdot exp(-z/d')$ - k=1-3, "Rückstreu-Parameter"

Lasereinteilung

Lasermoduscw (continueous wave) oder gepulstPulsdauerz.B. FemtosekundenlaserArt der Pulsherstellungfreilaufend/gütegeschaltet (Q-switch) / modensynchronisiertLasermediumz.B. FarbstofflaserLaserwellenlängez.B. UV-Laser

Lasertypen

ArF Excimentaser	Gaslaser	193
XeCl Excimerlaser	Gaslaser	308
He-Cd Laser	Gaslaser	325
Stickstofflaser	Gaslaser	337
XeF Excimentaser	Gaslaser	351
Argonionen-Laser	Gaslaser	351, 364, 488, 514
Kryptonionen-Laser	Gaslaser	407
He-Cd-Laser	Gaslaser	442
OPSL	Festkörperlaser	460, 488
He-Ne	Gaslaser	543, 633, 1152, 3391
Cu	Metalldampf	578
Au	Metalldampf	628
Rubinlaser	Festkörperlaser	628, 694
Laserdioden	Halbleiterlaser	450 - 1000
Farbstofflaser	Farbstofflaser	400-1000
Alexandritlaser	Festkömerlaser	750
Ti:Saphir Laser	Festkörperlaser	700 - 1000
OPSL	Festkörperlaser	980
Nd:YAG Laser	Festkörperlaser	1060
Holium-Laser	Festkörperlaser	2060
Erbium YAG Laser	Festkörperlaser	2936
CO ₂ Laser	Gaslaser	10600

UV-Laser

VIS-Laser

IR-Laser

Laserdioden: kleinste Laser (Abmessungen <500 µm möglich)

3.2. Übertragungssysteme

Transmission durch Atmosphäre

EO Sensor Design:

terrestrisch/extraterrestrisch Vorhandensein von Aerosol Mehrfachstreuung bei hohen Konzentrationen

$$\begin{split} \lambda &= 10.6 \ \mu m \\ \mu_a &= 0.3636 \ km^{-1} \\ \mu_s &= 0.00465 \ km^{-1} \\ \mu_a &+ \mu_s &= 0.3682 \ km^{-1} \ (1.58 \ dB/km) \end{split}$$

Monte Carlo Simulation der Photonenbewegung optischer Transport im Gewebe

Transmission durch Gewebe wird bestimmt durch Streuung und Absorption

Lichtübertragungssysteme: Lichtleiter

Monomode-Lichtleiter (5 µm Durchmesser) Multimode-Lichtleiter (50 - 600 µm) Stufenindex-LL / Gradientenlichtleiter

Optischer Gelenkarm / Mikromanipulator-Handstück

starre Endoskope

Flexible Endoskope

flexible bildübertragende Endoskope Ausnutzung von Lichtleitern für die Laseranregung Ausnutzung weiterer Lichtleiter für die optische Detektion

Fiberoptik bis zu 100000 Einzelfasern (10 - 80 µm Kern, 1 - 2 µm Mantel) T = 20 - 50%

Evaneszente (gedämpfte) Wellen

Lichteinkopplung in den Wellenleiter über Gitter (integrierte Optik)

Evolution of the evanescent wave intensity versus the distance from the interface

Problem: Streuung an Oberflächenunebenheiten

for different refraction index pairs. A: 1.46/1.33 B: 1.50/1.33 C: 1.7/1.33 D: 1.9/1.33, with $\theta i=71.6$ degree for all curves.

Optische Komponenten

Objektiv NA = nsin α 40x, oil, NA = 1.3 oil: 1,518 α = 58,90

Detektion aus 120⁰ möglich

GRIN-Linsen

Gradienten**in**dex-Linsen: Brechungsindex n ist nicht homogen, sondern hat radiale Verteilung:

www.grintech.de

3.3. Detektoren

a) Thermische Detektoren

Pyroelektrischer Detektoren Bolometer Thermosäule (Thermoelement) Kalorimeter

Geringe Sensitiviät (high NEP) Spektral unabhängig Slow ms response, Ausnahme: pyroel. D.) Oftmals Ein-Sensor-Element

b) Photonendetektoren

PMT / SEV Si Photodioden CCD Kamera MCP

photoelektrischer Effekt

innerer: Erzeugung von Elektron-Loch-Paaren (HL, Isolatoren)
äusserer: Erzeugung von freien Elektronen (Export) unter Aufwendung von Austrittsarbeit (E_{kin}=hv-A)

Hohe Sensitivität (single photon counting, low NEP) Wellenlängenabhängig Fast response (Spezial-PMT: <100 ps) FPA-Technologie (focal plane arrays)

PMT - SEV

photon - electron - electron amplification (internal gain) - current/voltage

- 1 Photokatode 2 Fokussierelektrode
- 3 Dynoden

Side on PMT End on PMT MCP Vakuumphotoempfänger Photoelektrode (Auslösung Elektronen) Beschleunigung auf einige 100 eV Herauslösen von Sekundärelektronen an Dynode 10- 16 Dynoden (Verstärkung 10⁴-10⁶) 1 kV Betriebsspannung

Material der Photokatode bestimmt spektrale Empfindlichkeit

CCD: charge coupled device CID: charge injection device

In Matrix (128x128 bis 4096x4096) angeordnete Sensorelemente (6.5x6.5 μ m² - 30x30 μ m², Mittenabstand: 10 - 30 μ m) auf vorwiegend Si-Basis (IR: HgCdTe, PbSnTe) Ladungsträger werden je nach Spannung paketweise verschoben (5 - 20 MHz) Innere Verstärkung: 1, $\eta = 50-80\%$ (Film: <1%)

2-Megapixel-Sensor mit Autofokus für Mobiltelefon

Photodiodenarray 2: Betrieb von CCD-Bildsensoren (Matrizen). a) Bildorganisierter Betrieb (frame transfer), b) Zwischenspaltenbetrieb (interline transfer). 1 Sensorteil, 2 Speicherteil, 3 Ausleseteil.

Detektorparameter

Parameter	Symbol	Definition	Einheit
Quanteneffizienz	η	n_{el}/n_{abs}	-
Spektrale Empfindlichkeit	$R(\lambda)$	$i_{\lambda}/\Phi_{\lambda}$	A/W
(spectral responsitivity)			
Totale Empfindlichkeit	R	i/Ф	A/W
(total responsitivity)			
Signal-Rausch-Verhältnis	SNR	$i_s/(i_n^2)^{0.5}$	-
(signal-to-noise ratio)			
Noise equivalent power	$NEP(\lambda)$	P(SNR=1)	W
Detectivity	$D(\lambda)$	$1/\text{NEP}(\lambda)$	1/W
Normalized detectivity	$D^*(\lambda)$	$(AB)^{0.5}/NEP$	cmHz ^{0.5} /W
		A: detector active a	irea
		B: noise bandwidth	L

Noise:

background photons, dark current, thermal (Johnson), amplifier, 1/f, readout, ...

4. System Design

Radargleichung für erkanntes Objekt (gesamter Strahl auf Target gerichtet)

Aus welcher Entfernung kann Target maximal erkannt werden? $P_R = S_{min}$: $R_{max} = (P_T \times T_1(\lambda_1) \times \phi_B \times T_2(\lambda_2) \times A_E / S_{min})^{0.5}$

z.B. $P_T = 100 \text{ mW}$, $\varphi_B = \pi$, $\lambda = 870 \text{ nm}$, $A_E = 100 \text{ cm}^2 \text{ x} \pi/4$, T = 1, B = 10 MHz, $\eta = 1$, $S_{min} = 10 \text{ hcB}/(\lambda \eta)$ $R_{max} = 3.3 \text{ km}$

Example of Passive Sensor System: NASA HIRIS

Figure 33. Imaging spectrometer concept using areaarray detectors.

Table 10. Optical System Parameters

Field-of-view	2 10
Magnification	0.931
Camera EFL	40.0 cm
Spectrometer Collimator EFL	43.0 cm
Fore-optics EFL	157.7 cm
Instrument EFL	142.8 cm
Focal ratio	f/3.8
Aperture	37.6 cm
IFOV	0.036 mrac

1pl

38

Table 8. HIRIS Functional Parameters

824 km
30 m
30.0 km
0.4-2.5 μm
9.4 nm 11.7 nm
+ 60°/-30° + 24°/-24°
12 bits/pixel
512 Mbits/sec
300 Mbits/sec
Gain states of 1 (off), 2, 4, and 8

Table 11. VNIR Detector Parameters Image format Spatial 1,000 pixels Spectral 128 rows (64 in imaging sec-tion, and 64 in storage section) Pixel size $52 \times 52 \,\mu m$ Full well capacity (FWC) Parallel 2.5×10^{6} electrons Serial register 5×10^{6} electrons Quantum efficiency >40%, 400-800 nm; >20%, 800-900 nm; >10%, 900-1,000 nm Readout noise <300 electrons rms <1% departure from linearity up to 90% of FWC Linearity Resolution MTF response >42% at the Nyquist frequency Dark current Negligible Vertical transfer rate >1 Mpixels/sec Note: Detector parameters are expressed in terms of electrons of signal (or noise). The quantum efficiency is the ratio of the number of electrons of signal to the number of input photons to the detector.