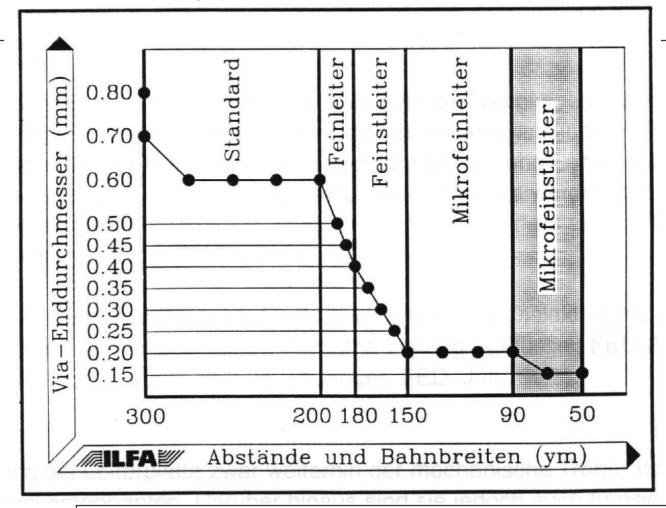

Leiterplatten

UTM der Weg zur Mikroelektronik

UTM

- UTM steht als Kurzbegriff für "<u>U</u>ltra-<u>T</u>hin-<u>M</u>ultilayerboards"
- Als UTM werden Multilayer-Bautypen klassifiziert, wenn deren Innenlagen ausschließlich aus Laminaten mit 50µm Materialdicke (oder weniger) bestehen.
- Für den Einsatz und die Produktion von UTM's müssen deren spezielle mechanische und elektronische Eigenschaften beachtet werden.

UTM



Dicke des Multilayers, Abstände der Multilayerlagen und die Dimension der Vias bei Standard-Multilayern und bei UTM's

UTM

- Die Entwicklung der UTM's ist mit der Zunahme von elektronischen Schaltungen in "Mikrofeinstleiter-Technik" (MFT) verknüpft und mit den zunehmenden Anforderungen an die EMV-Stabilität eines Gerätes.
- Antrieb für diese Evolution in der Platinenherstellung
 - Miniaturisierung der elektronischen Bauelemente (höhere Anschlußdichte pro Chip, geringer werdende Pitchabstände)
 - erweiterte Möglichkeiten der Bauteilmontage auf der Oberfläche der Leiterplatte (Bonden)
 - niedrigeren Betriebsspannungen (3 Volt-Technologie)

Layout-Klassen

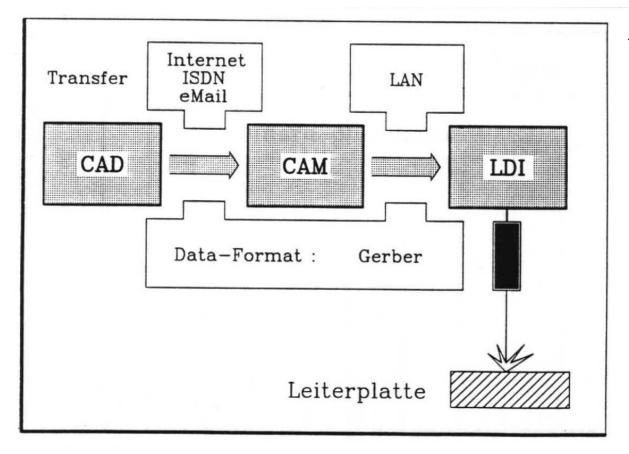
Klassifizierung von Leiterplatten

UTM- Technische Eigenschaften

Л's

spielt überall dort eine Rolle, wo das Gehäuse oder die Anwendung eine Reduzierung mechanischer Parameter verlangt.

- MDE-Geräte (Mobile Datenerfassung)
- Funktelefone
- Autoradios
- Speicherkarten
- Adapter
- Die wesentlich bessere Breitbandentkopplung, bedingt durch den geringen Lagenabstand,führt zu einer stabileren Schaltung (mit einem bis zu 80% reduzierten Störpegel).

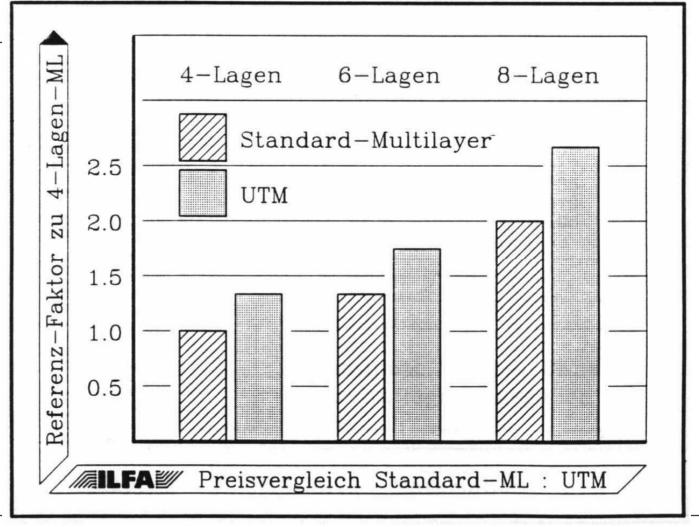

Leiterplatten-Technologie

- UTM's können mit technologische Verfahren produziert werden, die beim Hersteller in der Regel vorhanden sind und in der Leiterplattenfertigung seit Jahren Anwendung finden.
- Es sind keine Materialien mit gesonderter Spezifikation notwendig. Die Produktion von UTM's ist frei von Lizenzgebühren oder patentrechtlichen Einschränkungen.
- Das größte Problem für die Leiterplattenproduktion ist der Transport der 50mm-Innenlagen-Laminate durch die Bearbeitungsmaschinen.
- Höhere Ansprüche an die Platinenproduktion ergeben sich, wenn UTM's mit Leiterbildstrukturen im Mikrofeinstleiterbereich kombiniert werden.

Leiterplatten-Technologie

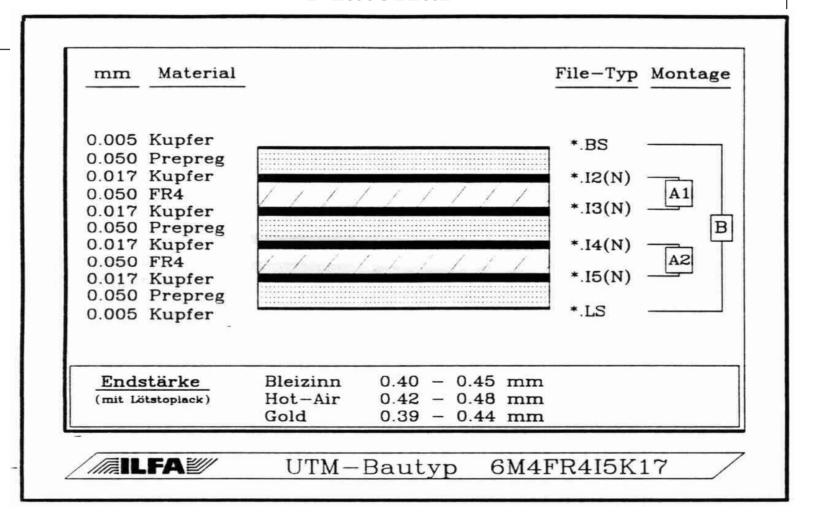
- Für die Belichtung der Leiterbildstrukturen kann man ein Laser-Direktbelichter (LDI) einsetzen.
- Qualitative Einbußen, die sich beim Einsatz von Filmen nicht umgehen lassen, wenn Leiterbilder <120µm realisiert werden sollen, werden dadurch eliminiert.
- Der LDI löst Bildstrukturen bis in einen Grenzbereich von 40µm auf.
- Dabei bleibt auch hier der Vorteil erhalten, daß Standardmaterialien eingesetzt werden können.

Leiterplatten-Technologie

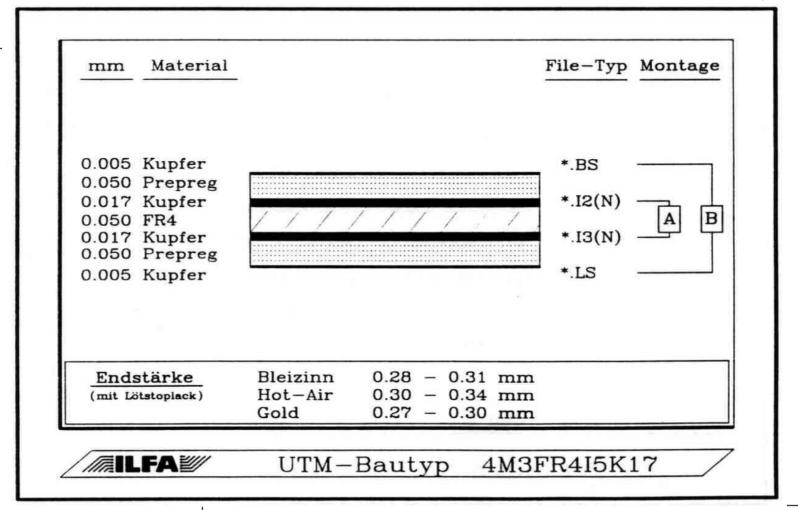


Schema einer Laserdirektbelichtung LDI (<u>Laser-Direct-Imaging</u>)

Produktionskosten

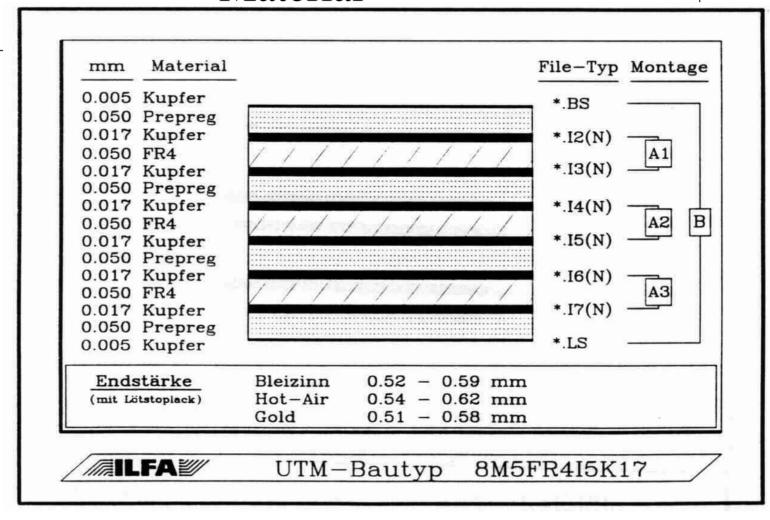

- Die Preise für Leiterplatten sind sehr stark gebunden an :
 - die Layout-Spezifikation
 - den Termin
 - die gewünschte Stückzahl
 - und die individuellen Materialvorgaben
- Im Mittel liegen UTM's um 30 % über der Referenz des jeweiligen Standard-Multilayers.

Produktionskosten



Preisvergleich zwischen UTM's und Standard-Multilayern

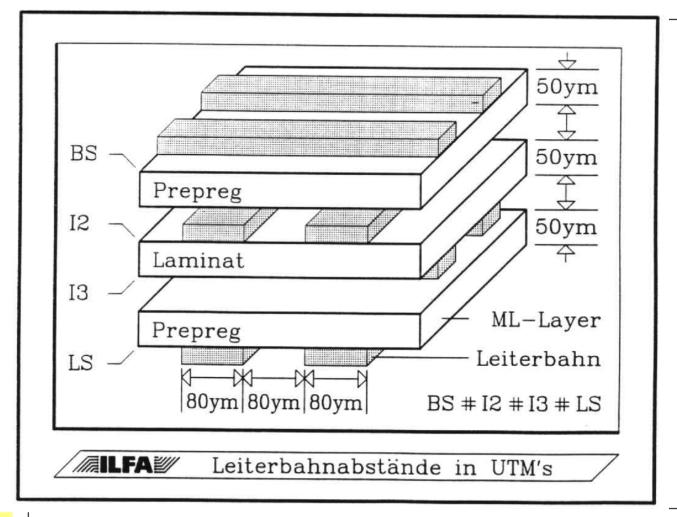
- UTM's sind aus allen Materialien herstellbar, die in sich genügend Festigkeit besitzen und als 50µm-Laminat von den Basismaterial-Produzenten zu Verfügung gestellt werden können.
- Geeignete Materialien sind :
 - FR4 (Epoxid-Glasharzgewebe)
 - FR5 (Epoxid-Glasharzgewebe)
 - BT (Bismaleimid-Triazin-Quarzglas / G200)
 - PD (Polyimidharz mit Aramidverstärkung)
- Nicht geeignet sind Verbundstoffe mit heterogenem Aufbau (CEM1,CEM3) oder Materialien mit zu geringer eigener Festigkeit, wie FR3 (Hartpapier) oder FR2 (Phenolharzpapier).


Übersicht zu möglichen Materialstärken für Multilayer

Bautyp 4-Lagen UTM

Material File-Typ Montage Material mm 0.005 Kupfer *.BS 0.050 Prepreg 0.017 Kupfer *.I2(N) 0.050 FR4 *.I3(N) 0.017 Kupfer 0.050 Prepreg 0.017 Kupfer *.14(N) 0.050 FR4 *.15(N) 0.017 Kupfer 0.050 Prepreg * I.S 0.005 Kupfer 0.40 - 0.45 mmEndstärke Bleizinn Hot-Air 0.42 - 0.48 mm(mit Lötstoplack) Gold 0.39 - 0.44 mm///ILFA 6M4FR4I5K17 UTM-Bautyp

Bautyp 6-Lagen UTM



Bautyp 8-Lagen UTM

Layout-Erstellung

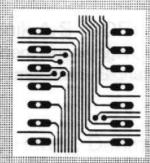
- Um Übersprechen und Einschränkungen in der Signalintegrität zu vermeiden, sollten die Vorzugsrichtungen für die Leiterbahnführung in aufeinanderfolgenden Ebenen eines Multilayers orthogonal zueinander liegen.
- Bei sensiblen Signalen muß die räumliche Struktur der einzelnen Lagen in einem UTM bedacht werden. In diesen Multilayern sind die Abstände der Leiterbahnen senkrecht zur Platine (von Ebene zu Ebene = 50μm) geringer, als waagerecht auf einer Ebene (=80μm).
- Für Schaltungen mit Leistungsaufnahme ist aus dem gleichen Grund die reduzierte Durchschlagsfestigkeit zu beachten.

Layout-Erstellung

Mechanische Dimensionen in UTM's

Layout-Erstellung

- High-Speed-Schaltungen erfordern eine Signalführung mit möglichst wenig Lagenwechsel.
- Der Einsatz von `Blind Vias ` kann bei 50µm-Abständen kritisch werden.
- Um Verwindungen und Verwölbungen der Leiterplatte in der Produktion und während der Bestückung zu vermeiden, müssen UTM's symmetrisch aufgebaut sein.
- Das Kombinieren von Powerplanes und Signalen in einer Ebene ist unbedingt zu vermeiden.


Track 500ym Via Abstand 200ym

Feinstleiter

Pad 0.6 * 2.0mm | Pad 0.6 * 2.0mm | Pad ungebohrt | Pad ungebohrt | 200ym Track 180ym Via 300ym Abstand 180ym

Mikrofeinstleiter

Pad 0.5 * 2.0mm Pad gebohrt Track 90ym Via 150ym Abstand 90ym

CAD-Strukturen (Gehäuse so14)

Vergleich verschiedener CAD-Strukturen