Elektromagnetische Verträglichkeit (3): **EMS**

Vorlesungsskript WS 2010 / 2011

Prof. Dr. Manfred Schmidt Fachbereich ET/IT

Dieses Material wurde ausschließlich für Lehrveranstaltungen Dieses Material wurde ausschließlich für Lehrveranstaltungen am Fachbereich Elektrotechnik und Informationstechnik der Fachhochschule Jena im WS 2003/04 konzipiert und zusammengestellt. In den Folgejahren erfolgten Modifikationen und Ergänzungen

Die verwendeten Abbildungen sind zum Teil aus den Angegebenen Literaturstellen im Sinne von Zitaten entnommen.

Das Material ist nur für die Lehrveranstaltungen des Autors konzipiert. Jegliche Verwendung außerhalb dieses Rahmens ist unerwünscht. Das betrifft auch eine unerlaubte Verbreitung durch Kopieren und/oder elektronische Medien.

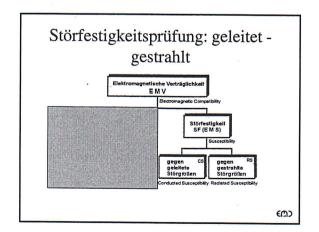
€@D

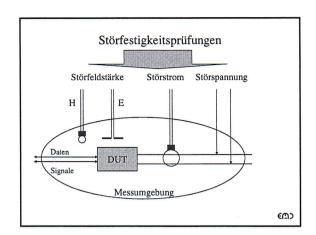
Grobgliederung Stand WS 2003/2004

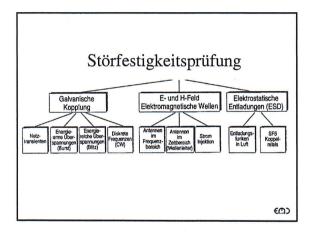
- 1. Einführung in die Probleme der Elektromagnetischen Verträglichkeit
- EMV-Richtlinie und Gesetz über die elektromagnetische Verträglichkeit, Normen (allgemein)
- 3. Störquellen, Störgrößen, Störsignale
- 4. Modelle und Koppelmechanismen

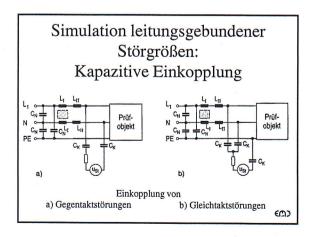
6. Störfestigkeitsprüftechnik

- 7. Theorie und Praxis elektromagnetischer Schirme
- 8. Entstörkomponenten und Entstörmittelmessung
- 9. EMV-gerechter Leiterplatten-Entwurf
- Schutz von Personen in elektrischen, magnetischen und elektromagnetischen Feldern (DIN VDE 0848)


താ


Störfestigkeits(messung) - Prüfung


- Allgemeine Forderungen: Messumgebung
- Simulation typischer Störphänomene
- Prüfschärfegrade
- Charakterisierung der Störfestigkeit: Ausfälle / Störung erweist sich als
 - kurzzeitig
 - reversibel
 - irreversibel

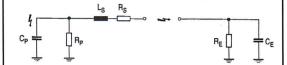

€@⊃

Störfestigkeitsprüfung: Störgrößen geleitet - gestrahlt Elektromagnetische Verträglichkeit E M V Bectromagnetic Compatibility Störgussendung SA (E M I) Emiss kon Störfestigkeit SF (E M S) Suscentibility gelektet Störenergie Störenergie Störenergie Störenergie Störenergie Störenergie Störenergie Störenergie Störgrößen Conducted Susceptibility Radialed Susceptibility

Simulation leitungsgebundener Störgrößen: Induktive Einkopplung Linkopplung Einkopplung von a) Gegentaktstörungen b) Gleichtaktstörungen Binkopplung von b) Gleichtaktstörungen

Störfestigkeitsprüfungen

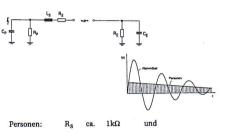
- Breitbandige impulsförmige Störgrößen
- Schmalbandige hochfrequente Störgrößen
- Magnetfelder
- Oberwellen auf Stromversorgungsnetz
- Spannungseinbrüche auf Versorgungsnetz
- ..


 ϵ

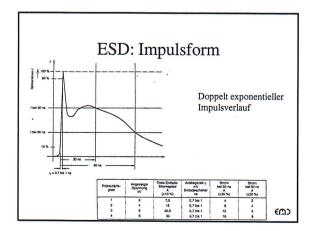
Impulsförmige Störgrößen

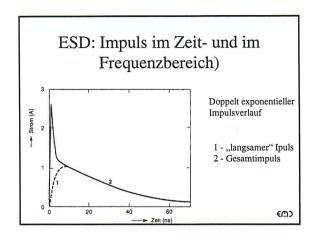
- Entladung statischer Elektrizität ESD DIN EN 61000 - 4- 2
- Schnelle transiente Störgrößen Burst DIN EN 61000 4 - 4
- Energiereiche Stoßspannungen Surge DIN EN 61000 4 - 5

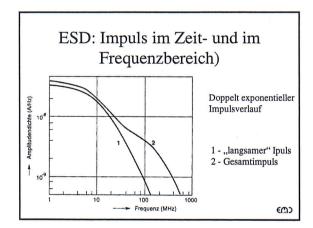
താ

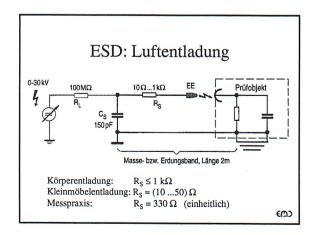

Electrostatic Discharge (ESD)

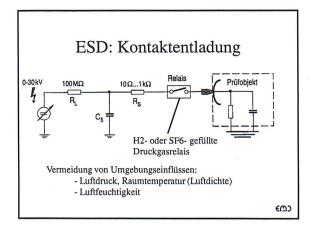
Ersatzschaltbild (Modell) für Entladung einer aufgeladenen
Person oder eines aufgeladenen Gegenstandes
Indizes:
P - statisch aufgeladener Körper
S - Serien-Ersatz-Bauelemente
E - Erd-...

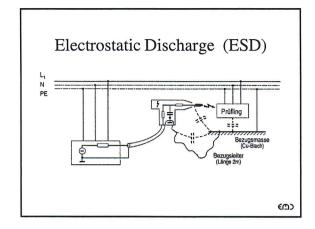

€@D

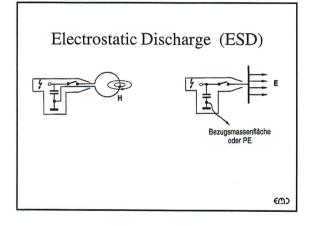

Electrostatic Discharge (ESD)

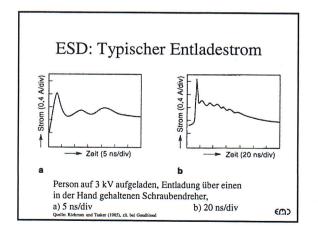


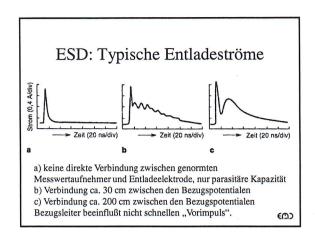

Kleinmöbeln: R_S 10Ω...50Ω

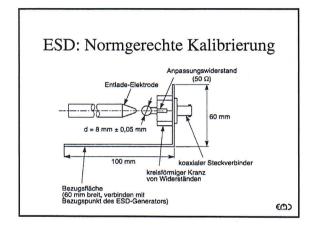

താ

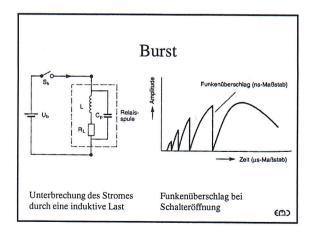


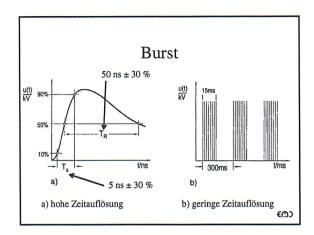


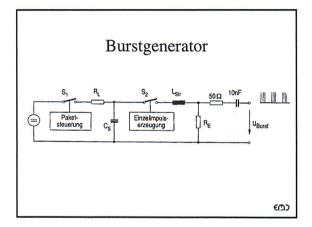


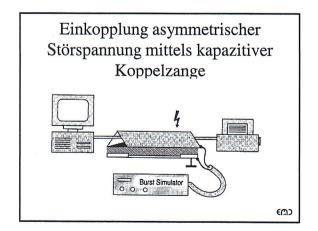


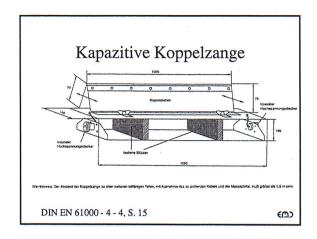

Grad	Prüfspannung		
	Kontakt-Entladung	Luft-Entladung	
1	2 kV	2 kV	
2	4 kV	4 kV	
3	6 kV	8 kV	
4	8 kV	15 kV	
x(1)	Spezial	Spezial	
	1		

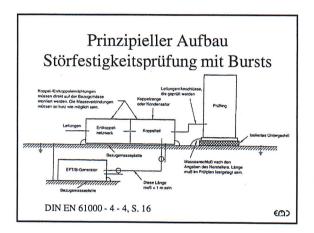


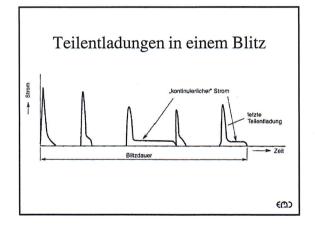




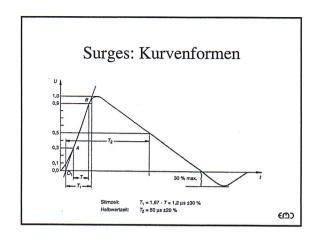


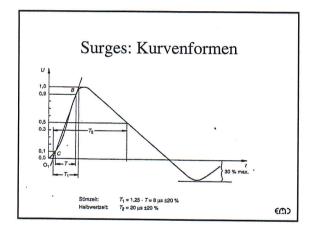


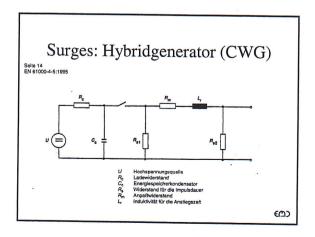




Prüfschärfe	Prüfspannung ±10% (Stromversorgungsleitungen)	Prüfspannung ±10% (Signal-, Datenleitungen)	Impulswieder- holfrequenz
1	0,5 kV	0,25 kV	5 kHz
2	1 kV	0,5 kV	5 kHz
3	2 kV	1 kV	5 kHz
4	4 kV	2 kV	2,5 kHz
х	n. Vereinbarung	n. Vereinbarung	n. Vereinbarung

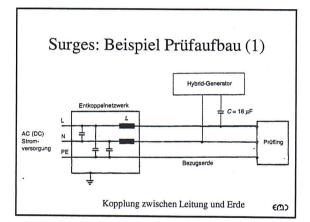

Breitbandige energiereiche Überspannungen (Surges)

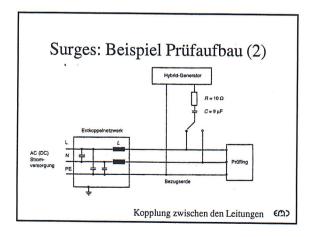

- Einkopplung (galvanisch, induktiv) atmosphärischer Entladungen, Schalthandlungen in Elektroenergiesystemen etc.
- Simulation mit klassischen genormten Kurvenformen der Hochspannungsprüftechnik (Blitz- und Schaltstoßspannungen)

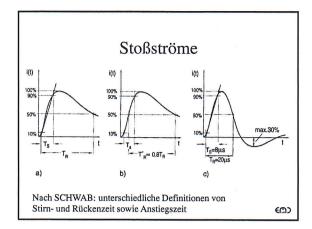

ബേ

Natürliche elektrostatische				
Entladungen: Blitze				
Parameter	Einheit	Minimum	Mittelwert	Maximum
Blitz				
Dauer	S	0,03	0,2	2
Ladung	С	1	35	300
Teilentladungen				
Anzahl pro Blitz	**	1	3	25
Wiederholdauer	ms	3	50	100
Spitzenstrom	kA	1	15	250
Anstiegszeit	μs	<0,5	2	30
Steilheit	kA/μs	<1	20	200
Halbwertszeit	μs	10	45	250
Kontinuierlicher Strom				
Dauer	ms	50	150	500
Amplitude	Λ	30	150	1600
Ladung	C	3	25	330
				മോ

Surges: Hybridgenerator (CWG)


	nach IEC 60-1		nach IEC 469-1	
Definition	Stirnzeit µs	Halbwertzeit µs	Anstiegszeit (10 %–90 %) µs	Dauer (50 %-50 %) μs
Leerlaufspannung	1,2	50	1	50
Kurzschlußstrom	8	20	6,4	16


ANMERIKUNG: In IEC-Normen sind die Impulsformen 1,2/50 µs und 8/20 µs im allgemeinen nach IEC 60-1, wie in den Bildern 2 und 3 dargestellt, angegeben. Andere IEC-Empfehlungen basieren auf der Impulsdefinition nach IEC 489-1, wie im Tabelle 2 angegeben.


Beide Definitionen gelten für diesen Hauptabschnitt der IEC 1000-4 und beziehen sich auf einen einzige Generator.

Seite 14 EN 61000-4-5:1995

തോ

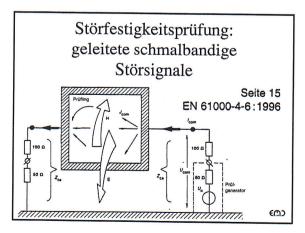
Typische Testgrößen und Parameter

- Zeitparameter
- - hochohmige Prüfobjekte: genormte Stoßspannungen und Schaltspannungen
 - niederohmige Prüfobjekte (nach Ansprechen des Überspannungsschutzes): genormter Kurzschlußstrom

€@D

Prüfschärfegrade		
Prüfschärfe	Leerlaufspannung / kV ±10%	
1	0,5	
2	1,0	
3	2,0	
4	4,0	
х	nach Vereinbarung	

Genormte Impulsprüfungen: Zusammenstellung der Merkmale

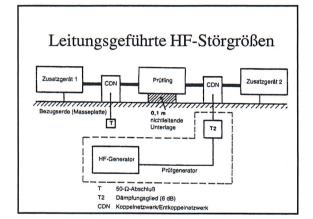

Merkmale	Elektrostatische Entladung	Schaltvorgänge	Blitz
Bezeichnung	ESD	Burst	Surge
Spannung U	< 15 kV	< 4 kV	< 6 kV
Energie bei U	< 10 mJ	< 300 mJ	< 300 J
Wiederholfrequenz	Einzelstöße	Mehrfachimpulse 5 kHz	max. 6 Stöße / Minute
Frequenzanteile f max	ca. 600 MHz	ca. 100 MHz	ca. 350 kHz
Anwendung auf Prūfobjekte	von Personen berührbare Metallteile	Netz-, Signal-, Meß- und Datenleitungen	Netz-, Signal-, Meß- Und Datenleitungen

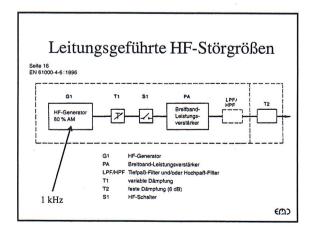
€@D

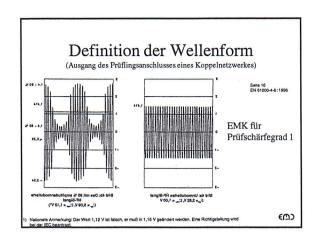
Störfestigkeitsprüfung: geleitete schmalbandige Störsignale

- Induziert in Gehäusen und Versorgungsleitungen durch elektromagnetische Felder
- Frequenzbereich 150 kHz 80 MHz (230 MHz)
- hochfrequente amplitudenmodulierte Testsignale (1kHz, 80 %)

ഡോ

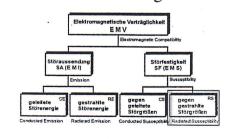

Störfestigkeitsprüfung: asymmetrische HF-Ströme


Seite 15 EN 61000-4-6:1996



- asymmetrischer Anschlußpunkt des Prüflings an das Koppelnetzwerk/Entkoppelnetzwerk, Z_a = 150 Ω
 ANNERKUNG: Die 100-Ω-Widerstände werden durch die Koppelnetzwerke/Entkoppelnetzwerke dargestellt. Der linke Eingang durch einen (passiven) 50-Ω-Widerstand abgeschlossen, während der rechte Eingang durch den Prüflenerator belastet wird.
 U_w Ausgangsspannung des Prüflenerators (EMK)
 U_m asymmetrische Spannung zwischen Prüfling und Bezugserde (Masseplatte)
 J_{em} Stromdichte auf leitender Oberfläche oder Ströme auf anderen Leilern im Prüfling
 E, H Elektrische und magnetische Feider

€@⊃

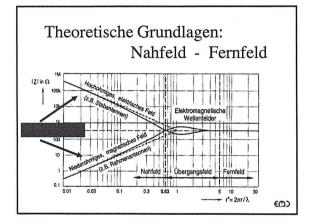


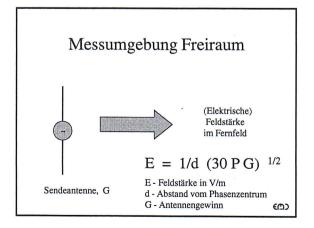
Leitungsgeführte HF-Störgrößen: Prüfschärfegrade

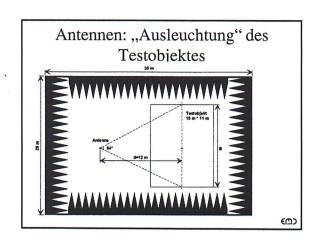
Cabidaaaada	Spannung	(EMK)	
Schärfegrade	U_0 in dB(μ V)	U_0 in V	
1	120	1	
2	130	3	
3	140	10	
X1)	besonders festzulegen		

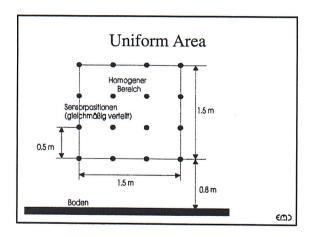
Störfestigkeitsprüfung: Gestrahlte Störgrößen താ

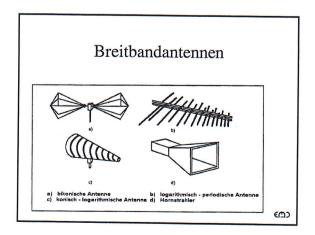
താ

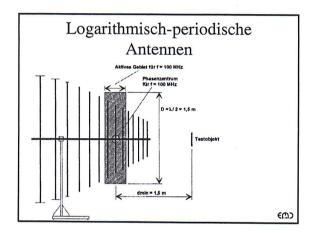


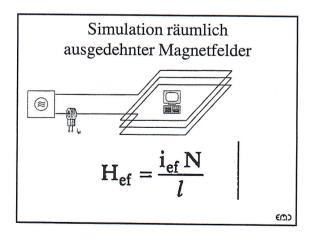

18

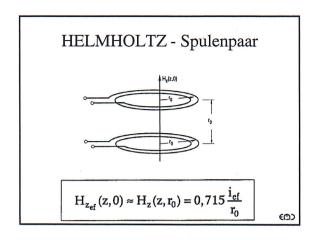

Störfestigkeitsprüfung: Gestrahlte Störgrößen

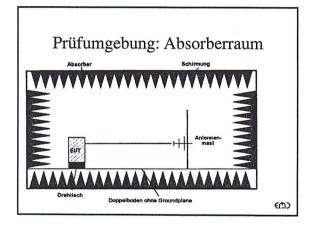

- Simulation schmalbandiger Störfelder
- Absorberräume
- Antennen
- Spezialantennen und Wellenleiter

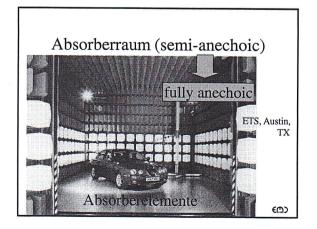

€@⊃

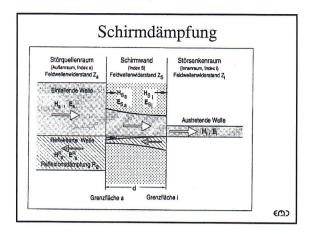




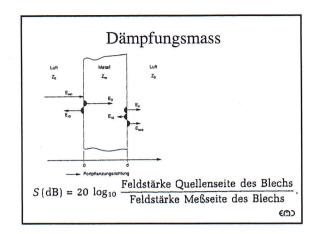


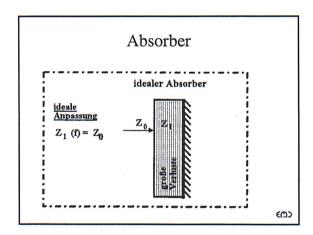

Frequenzbereich	Antennentyp	typ. Gewinn	
20 MHz bis 300 MHz	Bikonische Antenne	-15 2 dBi	
20 MHz bis 220 MHz	logper. Antenne mit verkürzten Elementen	2 6 dBi	
20 MHz bis 1 GHz	Bilog-Antenne (Kombination aus Breithanddipol und logper Antenne)	-15 6 dBi	
80 MHz bis 1 GHz	logper. Antenne	5.5 7 dBi	
200 MHz bis 1 GHz	logper. Antenne	6 7 dBi	
200 MHz bis 2 GHz	logper. Antennenarray	9 10 dBi (2er) 12 15 dBi (4er)	
400 MHz bis 1 GHz	Double Ridged Horn	13 16 dBi	
1 GHz - 2 GHz 2 GHz - 4 GHz 4 GHz - 8 GHz 8 GHz - 18 GHz	Pyramidenhorn	13 16 dBi	
1 GHz - 18 GHz	Double Ridged Horn	13 dBi	
18 GHz - 26,5 GHz 26 GHz - 40 GHz	Pyramidenhom	13 15 dBi	€Œ

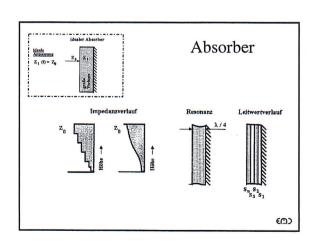


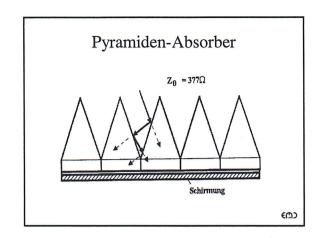


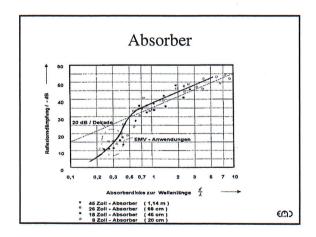
2	

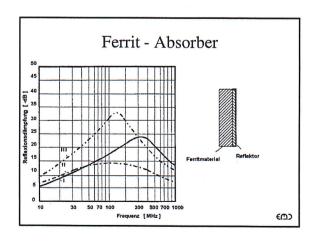


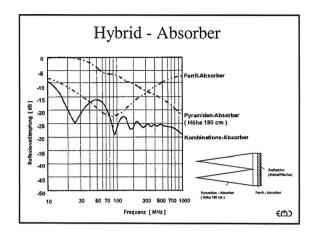

Schirmdämpfung elektromagnetischer Schirme:
Impedanzkonzept nach
SCHELKUNOFF

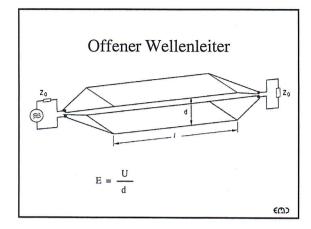

 $S \equiv a = R + A + B$

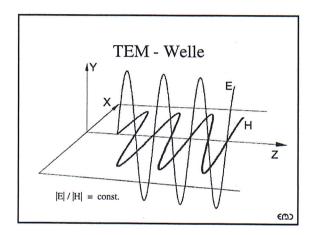

- R die Reflexionsdämpfung an den Grenzflächen a und i
- A die Absorptionsdämpfung durch die Abschwächung in der Schirmwand (Umwandlung elektromagnetischer Energie in Wärme durch Stromwärmeverluste)
- B ein Korrekturterm, der die mehrfachen Reflexionen innerhalb der Schirmwand berücksichtigt (kann entfallen für A>10...15 dB)

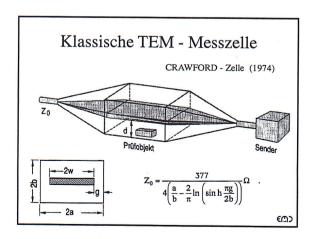

മോ








Prüfumgebung: Normen


- Referenz: Uniform Area
- TEM Wellenleiter
- GTEM Zelle (Spezieller Wellenleiter)

۩⊃

Symmetrisch gespeiste E-Feld-Antenne

