

Arbeitsverzeichnis:

Laufwerk: E:\ JahrMonat\_Name z.B. E:\0805\_Meier (Projekte grundsätzlich nicht! auf Laufwerk C speichern)

### Ziel des Versuches

- Berechnung von Audiofiltern
- Anwendung von Filtern auf Audiodateien
- Darstellung des gleitenden Effektivwerts mittels Tiefpassfilter

# Aufgabe 1: Berechnung und Test von IIR - Audiofiltern 2. Ordnung

Allgemeine Form für IIR-Filter 2. O.:

$$h(z) = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2}}{1 + a_1 z^{-1} + a_2 z^{-2}}$$

Anwendung eines diskreten Filters auf eine Datei x:

>>y=filter(num,den,x); mit den= [a0 a1 a2] num=[b0 b1 b2]

Der Zusammenhang zwischen den Filterparametern (Verstärkung/Dämpfung, Peak- bzw. Grenzfrequenz und Güte) und den Filterkoeffizienten (a<sub>i</sub> und b<sub>i</sub>) ist für Shelf- und Peaktfilter im Anhang B gegeben.

1. Erstellen Sie m-files mit der Bezeichnung "peak.m", "lowshelf.m" und "highshelf.m" zur Berechnung der Koeffizientenvektoren "num" und "den" für Peakfilter, Höhen- und Tiefenshelfing. Die Eingabe der Filterparameter (Grenz- oder Peakfrequenz Fc, Verstärkung G (in dB) und Güte Q) sowie der Samplingfrequenz Fs soll dabei über das Command-Window erfolgen.

Berechnen Sie damit die Filterkoeffizienten für folgende Parameter:

|       | Peak  | Lowshelf | Highshelf |
|-------|-------|----------|-----------|
| Fs/Hz | 44100 | 44100    | 44100     |
| Fc/Hz | 1000  | 100      | 5000      |
| G/dB  | 3     | -6       | -3        |
| Q     | 2     |          |           |

2. Testen sie das Filter mit Hilfe des Matlab-Werkzeugs fdatool (Filter Design and Analysis Tool) Öffnen sie dazu fdatool und Importieren Sie die berechneten Filterkoeffizienten aus dem Workspace

Command window

>>fdatool

Öffnet die Bedienoberfläche des fdatools

Einstellungen:

- 1) File>Import filter from Work Space
- 2) Einstellen der Frequenzeinheit auf "Hz"
- 3) Einstellen der Samplingfrequenz auf "44100Hz"
- 4) Ersetzen der vorhandenen Wert für Numerator und Denominator durch die
- Koeffizientenvektoren "num" und "den"
- 5) Import Filter



3. Wenden Sie das Filter auf eine Audiodatei an.

Verwenden Sie dazu die Befehle und m-files aus dem vorangegangenen Versuch.

Geben Sie die Audiodatei vor und nach der Filterung über die Soundkarte aus.

# Aufgabe 2: Bestimmung des gleitenden Effektivwertes einer Audiodatei

Für die Berechnung des gleitenden Effektivwertes sind folgende Schritte erforderlich (Siehe Vorlesung):

- Quadrierung der Samplewerte
- Filterung mit Tiefpass
- Ziehen der Wurzel

Für die Koeffizienten des Filters 1. Ordnung gilt:

b0=TAV b1=0; a0=1 a1=TAV-1

Die Mittelungszeitkonstante TAV berechnet sich aus der Mittelungszeit tm und der Samplingfrequenz Fs folgendermaßen:

TAV=1-exp(-2.2\*/(Fs\*tm))

1. Stellen sie eine Audiodatei zusammen mit ihrem gleitenden Effektivwert grafisch dar.

Benutzen Sie die im vorangegangenen Versuch verwendeten Funktionen zum Einlesen und Darstellen von Audiodateien

# Anhang A:

### Hilfreiche MATLAB-Funktionen

| >>a=input('a=')  | Eingabe eines Wertes für a im Command-Wimdow                                        |
|------------------|-------------------------------------------------------------------------------------|
| x.^2             | Quadriert Vektor x elementweise                                                     |
| sqrt(x)          | zieht elementweise die Wurzel aus Vektor x                                          |
| b=[0 0]          | Erzeugt Zeilenvektor mit zwei Elementen mit dem Wert 0                              |
| a=[1 0]          | Erzeugt Zeilenvektor mit den Elementen a(1)=1 und a(2)=0                            |
| a(2)=c           | weist dem zweiten Element von Vektor a den Wert c zu                                |
| y=filter(num,der | n,x) Wendet die Filterkoeffizienten in den Vektoren "num" und "den" auf die Datei x |

an

# Peakfilter



Peak filter design with  $K = \tan(\pi f_c/f_s)$ 

Frequency responses second-order peak filters.

Quelle: Zölzer, DAFX - Digital Audio Effekts, John Wiley & Sons LTD, 2006

| low-frequency shelving (boost $V_0 = 10^{G/20}$ )                  |                                            |                                                                |                                                |                                                                   |  |  |  |
|--------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------|--|--|--|
| $b_0$                                                              | $b_1$                                      | $b_2$                                                          | $a_1$                                          | $a_2$                                                             |  |  |  |
| $\frac{1 + \sqrt{2V_0}K + V_0K^2}{1 + \sqrt{2}K + K^2}$            | $\frac{2(V_0K^2-1)}{1+\sqrt{2}K+K^2}$      | $\frac{1 - \sqrt{2V_0}K + V_0K^2}{1 + \sqrt{2}K + K^2}$        | $\frac{2(K^2 - 1)}{1 + \sqrt{2}K + K^2}$       | $\frac{1-\sqrt{2}K+K^2}{1+\sqrt{2}K+K^2}$                         |  |  |  |
| low-frequency shelving (cut $V_0 = 10^{-G/20}$ )                   |                                            |                                                                |                                                |                                                                   |  |  |  |
| $b_0$                                                              | $b_1$                                      | $b_2$                                                          | $a_1$                                          | $a_2$                                                             |  |  |  |
| $\frac{1 + \sqrt{2}K + K^2}{1 + \sqrt{2V_0}K + V_0K^2}$            | $\frac{2(K^2-1)}{1+\sqrt{2V_0}K+V_0K^2}$   | $\frac{1 - \sqrt{2}K + K^2}{1 + \sqrt{2V_0}K + V_0K^2}$        | $\tfrac{2(V_0K^2-1)}{1+\sqrt{2V_0K}+V_0K^2}$   | $\frac{1 - \sqrt{2V_0}K + V_0K^2}{1 + \sqrt{2V_0}K + V_0K^2}$     |  |  |  |
| high-frequency shelving (boost $V_0 = 10^{G/20}$ )                 |                                            |                                                                |                                                |                                                                   |  |  |  |
| $b_0$                                                              | $b_1$                                      | $b_2$                                                          | $a_1$                                          | $a_2$                                                             |  |  |  |
| $\frac{V_0 + \sqrt{2V_0}K + K^2}{1 + \sqrt{2}K + K^2}$             | $\frac{2(K^2 - V_0)}{1 + \sqrt{2}K + K^2}$ | $\frac{V_0 - \sqrt{2V_0}K + K^2}{1 + \sqrt{2}K + K^2}$         | $\frac{2(K^2 - 1)}{1 + \sqrt{2}K + K^2}$       | $\frac{1-\sqrt{2}K+K^2}{1+\sqrt{2}K+K^2}$                         |  |  |  |
| high-frequency shelving (cut $V_0 = 10^{-G/20}$ )                  |                                            |                                                                |                                                |                                                                   |  |  |  |
| $b_0$                                                              | $b_1$                                      | $b_2$                                                          | $a_1$                                          | $a_2$                                                             |  |  |  |
| $\tfrac{1+\sqrt{2}K+K^2}{V_0+\sqrt{2V_0}K+K^2}$                    | $\tfrac{2(K^2-1)}{V_0+\sqrt{2V_0}K+K^2}$   | $\tfrac{1-\sqrt{2}K+K^2}{V_0+\sqrt{2V_0}K+K^2}$                | $\frac{2(K^2/V_0-1)}{1+\sqrt{2/V_0}K+K^2/V_0}$ | $\frac{1 - \sqrt{2/V_0}K + K^2/V_0}{1 + \sqrt{2/V_0}K + K^2/V_0}$ |  |  |  |
| First-order Shelving Filters Second-order Shelving Filters         |                                            |                                                                |                                                |                                                                   |  |  |  |
| 15<br>10<br>↑ 5<br>₩ 0<br>.⊑ 0<br>.⊑ 0<br><br><br><br><br><br><br> | 200 2000                                   | 15<br>10<br>↑ 5<br>♥ 0<br>.⊆<br>-5<br>-10<br>-15<br>-20000 -20 |                                                | 2000 20000                                                        |  |  |  |

Second-order shelving filter design with  $K = \tan(\pi f_c/f_s)$ 

Frequency responses for first-order and second-order shelving filters

Quelle: Zölzer, DAFX - Digital Audio Effekts, John Wiley & Sons LTD, 2006

f in Hz  $\rightarrow$ 

f in Hz  $\rightarrow$